Here, we report an improved synthesis of the bulky phosphanide anion [P(SiPr)] in synthetically useful yields and its complexation to group 12 metals. The ligand is obtained as the sodium salt NaP(SiPr) in a 42% isolated yield and a single step from red phosphorus and sodium. This is a significantly higher-yielding and safer preparation compared to the previously reported synthesis of this ligand, and we have thus applied to the synthesis of the two-coordinate complexes M[P(SiPr)] (M = Zn, Cd, Hg).
View Article and Find Full Text PDFWe report the first total syntheses of simonsol F (3), simonsinol (5), fargenin (4), and macranthol (6) in addition to syntheses of simonsol C (2), simonsol G (1), and honokiol (14). The syntheses are based upon a phosphonium ylide-mediated cascade reaction and upon natural product isomerization reactions which proceed through Cope rearrangements of putative biosynthetic dienone intermediates. As a corollary of the natural product isomerization reactions, we propose an alternative biosynthesis of honokiol (14), simonsinol (5), and macranthol (6) which unites the natural products in this family under a single common precursor, chavicol (7).
View Article and Find Full Text PDFThe scission and homologation of CO is a fundamental process in the Fischer-Tropsch reaction. However, given the heterogeneous nature of the catalyst and forcing reaction conditions, it is difficult to determine the intermediates of this reaction. Here we report detailed mechanistic insight into the scission/homologation of CO by two-coordinate iron terphenyl complexes.
View Article and Find Full Text PDFA series of -substituted acenaphthene-based phosphine selenoether bidentate ligands Acenap(PrP)(SeAr) (-, Acenap = acenaphthene-5,6-diyl, Ar = Ph, mesityl, 2,4,6-trisopropylphenyl and supermesityl) were prepared. The rigid acenaphthene framework induces a forced overlap of the phosphine and selenoether lone pairs, resulting in a large magnitude of through-space coupling, ranging from 452 to 545 Hz. These rigid ligands - were used to prepare a series of selected late d-block metals, mercury, and borane complexes, which were characterized, including by multinuclear NMR and single-crystal X-ray diffraction.
View Article and Find Full Text PDFTreatment options for the management of breast cancer are still inadequate. This inadequacy is attributed to the lack of effective targeted medications, often resulting in the recurrence of metastatic disorders. Cumulative evidence suggests that epidermal growth factor receptor (EGFR-TK) and cyclin-dependent kinases-9 (CDK-9) overexpression correlates with worse overall survival in breast cancer patients.
View Article and Find Full Text PDFTwo-coordinate transition metal complexes are exciting candidates for single-molecule magnets (SMMs) because their highly axial coordination environments lead to sizeable magnetic anisotropy. We report a series of five structurally related two-coordinate Fe(II) -terphenyl complexes (4-R-2,6-XylCH)Fe [R = Bu (1), SiMe (2), H (3), Cl (4), CF (5)] where, by changing the functionalisation of the -substituent (R), we alter their magnetic function. All five complexes are field-induced single-molecule magnets, with relaxation rates that are well-described by a combination of direct and Raman mechanisms.
View Article and Find Full Text PDFA series of group 11 -terphenyl complexes have been synthesized via a metathesis reaction from the iron(II) complexes (2,6-MesCH)Fe and (2,6-XylCH)Fe (Mes = 2,4,6-MeCH; Xyl = 2,6-MeCH). [2,6-MesCHM] (, M = Cu; , M = Ag; , M = Au) and [2,6-XylCHM] (, M = Cu; , M = Ag) are dimeric in the solid state, although different geometries are observed depending on the ligand. These complexes feature short metal-metal distances in the expected range for metallophilic interactions.
View Article and Find Full Text PDFThe effect of para-substitution upon the structural and electronic properties of a series of m-terphenyl lithium complexes [R-Ar-Li] (R = t-Bu 1, SiMe2, H 3, Cl 4, CF5; where R-Ar = 2,6-{2,6-Xyl}-4-R-CH and 2,6-Xyl = 2,6-MeCH) has been investigated. X-ray crystallography reveals the complexes to be structurally similar, with little variation in C-M-C bond lengths and angles across the series. However, in-depth NMR spectroscopic studies reveal notable electronic differences, showing a linear correlation between the Li{H} NMR chemical shifts of the para-substituted complexes and their Hammett constants.
View Article and Find Full Text PDFThe reaction between a two-coordinate Co(ii) diaryl complex and "GaI" affords 2,6-Pmp2C6H3CoGa3I5, in a new geometry for a heavier group 13-transition metal cluster. Experimental and computational investigations show that this compound is best described as a nido metalla-group 13 cluster.
View Article and Find Full Text PDFThe enantioselective synthesis of densely functionalized polycarbocycles by the rhodium(i)-catalyzed reaction of arylboronic acids with 1,3-diketones is described. The key step in these desymmetrizing domino addition-cyclization reactions is an alkenyl-to-aryl 1,4-Rh(i) migration, which enables arylboronic acids to function effectively as 1,2-dimetalloarene surrogates.
View Article and Find Full Text PDFEnforcing unusually low coordination numbers on transition metals with sterically demanding ligands has long been an area of interest for chemists. Historically, the synthesis of these challenging molecules has helped to elucidate fundamental principles of bonding and reactivity. More recently, there has been a move towards exploiting these highly reactive complexes to achieve a range of transformations using cheap, earth-abundant metals.
View Article and Find Full Text PDFA magnesium complex (1) featuring a bidentate aminopyridinato ligand is a remarkably selective catalyst for the dehydrocoupling of amine-boranes. This reaction proceeds to completion with low catalyst loadings (1 mol %) under mild conditions (60 °C), exceeding previously reported s-block systems in terms of selectivity, rate, and turnover number (TON). Mechanistic studies by in situ NMR analysis reveals the reaction to be first order in both catalyst and substrate.
View Article and Find Full Text PDFCarbon monoxide is a key C feedstock for the industrial production of hydrocarbons, where it is used to make millions of tonnes of chemicals, fuels, and solvents per annum. Many transition metal complexes can coordinate CO, but the formation of new C-C bonds in well-defined compounds from the scission and subsequent coupling of two or more CO moieties at a transition metal centre remains a challenge. Herein, we report the use of low-coordinate iron(II) complexes for the selective scission and homologation of CO affording unusual squaraines and iron carboxylates at ambient temperature and pressure.
View Article and Find Full Text PDFHere, we highlight the ability of peri-substitution chemistry to promote a series of unique P-P/P-As coupling reactions, which proceed with concomitant C-H bond formation. This dealkanative reactivity represents an interesting and unexpected expansion to the established family of main-group dehydrocoupling reactions. These transformations are exceptionally clean, proceeding essentially quantitatively at relatively low temperatures (70-140 °C), with 100% diastereoselectivity in the products.
View Article and Find Full Text PDFBis(borane) adducts Acenap(PiPr2·BH3)(PRH·BH3) (Acenap = acenaphthene-5,6-diyl; 4a, R = Ph; 4b, R = ferrocenyl, Fc; 4c, R = H) were synthesised by the reaction of excess H3B·SMe2 with either phosphino-phosphonium salts [Acenap(PiPr2)(PR)](+)Cl(-) (1a, R = Ph; 1b, R = Fc), or bis(phosphine) Acenap(PiPr2)(PH2) (3). Bis(borane) adducts 4a-c were found to undergo dihydrogen elimination at room temperature, this spontaneous catalyst-free phosphine-borane dehydrocoupling yields BH2 bridged species Acenap(PiPr2)(μ-BH2)(PR·BH3) (5a, R = Ph; 5b, R = Fc; 5c, R = H). Thermolysis of 5c results in loss of the terminal borane moiety to afford Acenap(PiPr2)(μ-BH2)(PH) (14).
View Article and Find Full Text PDFCoordination chemistry of an acenaphthene peri-backbone-supported phosphino-phosphonium chloride (1) was investigated, revealing three distinct modes of reactivity. The reaction of 1 with Mo(CO)4(nor) gives the Mo(0) complex [(1)Mo(CO)4Cl] (2), in which the ligand 1 exhibits monodentate coordination through the phosphine donor and the P-P bond is retained. PtCl2(cod) reacts with the chloride and triflate salts of 1 to form a mononuclear complex [(1Cl)PtCl2] (3) and a binuclear complex [((1Cl)PtCl)2][2TfO] (4), respectively.
View Article and Find Full Text PDFN,N-Diisopropyl-2-propylbenzamide 6-H undergoes lateral deprotonation by t-BuLi in the presence of the Lewis base PMDTA (N,N,N',N″,N″-pentamethyldiethylenetriamine) to give a benzyllithium 6-Li(l)·PMDTA that incorporates a trigonal planar secondary carbanion. In the solid state, the amide directing group and the PMDTA additive work together to abstract the metal ion from the deprotonated α-C of the propyl group (4.107(4) Å).
View Article and Find Full Text PDF