Carbohydrates are complex structures that still challenge analysts today because of their different levels of isomerism, notably the anomerism of the glycosidic bond. It has been shown recently that anomerism is preserved upon gas-phase fragmentation and that high-resolution ion mobility (IMS) can distinguish anomers. However, these concepts have yet to be applied to complex biological products.
View Article and Find Full Text PDFMannoside phosphorylases are involved in the intracellular metabolization of mannooligosaccharides, and are also useful enzymes for the synthesis of oligosaccharides. They are found in glycoside hydrolase family GH130. Here we report on an analysis of 6308 GH130 sequences, including 4714 from the human, bovine, porcine and murine microbiomes.
View Article and Find Full Text PDFIn vitro polymerization of β-mannans is a challenging reaction due to the steric hindrance confered by the configuration of mannosyl residues and the thermodynamic instability of the β-anomer. Whatever the approach used to date-whether chemical, or enzymatic with glycosynthases and mannosyltransferases-pure β-1,4-mannans have never been synthesized in vitro. This has limited attempts to investigate their role in the production of plant and algal cell walls, in which they are highly abundant.
View Article and Find Full Text PDFWe used combinatorial engineering to investigate the relationships between structure and linkage specificity of the dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, and to generate variants with altered specificity. Sequence and structural analysis of glycoside-hydrolase family 70 enzymes led to eight amino acids (D306, F353, N404, W440, D460, H463, T464 and S512) being targeted, randomized by saturation mutagenesis and simultaneously recombined. Screening of two libraries totaling 3.
View Article and Find Full Text PDFTo metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze β-D-Manp-1,4-β-D-GlcpNAc-1,4-D-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis.
View Article and Find Full Text PDFSeven dextran types, displaying from 3 to 20% α(1→3) glycosidic linkages, were synthesized in vitro from sucrose by mutants of dextransucrase DSR-S from Leuconostoc mesenteroides NRRL B-512F, obtained by combinatorial engineering. The structural and physicochemical properties of these original biopolymers were characterized. When asymmetrical flow field flow fractionation coupled with multiangle laser light scattering was used, it was determined that weight average molar masses and radii of gyration ranged from 0.
View Article and Find Full Text PDFLip2 lipase from Yarrowia lipolytica is a very promising lipase with many potential applications (e.g. resolution of racemic mixtures, production of fine chemicals).
View Article and Find Full Text PDF