Psychophysiology
August 2024
The neural circuits of reward processing and interval timing (including the perception and production of temporal intervals) are functionally intertwined, suggesting that it might be possible for momentary reward processing to influence subsequent timing behavior. Previous animal and human studies have mainly focused on the effect of reward on interval perception, whereas its impact on interval production is less clear. In this study, we examined whether feedback, as an example of performance-contingent reward, biases interval production.
View Article and Find Full Text PDFAnimals actively sample their environment through orienting actions such as saccadic eye movements. Saccadic targets are selected based both on sensory evidence immediately preceding the saccade, and a "salience map" or prior built-up over multiple saccades. In the primate cortex, the selection of each individual saccade depends on competition between target-selective cells that ramp up their firing rate to saccade release.
View Article and Find Full Text PDFThe prefrontal cortex is crucial for economic decision-making and representing the value of options. However, how such representations facilitate flexible decisions remains unknown. We reframe economic decision-making in prefrontal cortex in line with representations of structure within the medial temporal lobe because such cognitive map representations are known to facilitate flexible behaviour.
View Article and Find Full Text PDFDuring perceptual decision-making tasks, centroparietal electroencephalographic (EEG) potentials report an evidence accumulation-to-bound process that is time locked to trial onset. However, decisions in real-world environments are rarely confined to discrete trials; they instead unfold continuously, with accumulation of time-varying evidence being recency-weighted towards its immediate past. The neural mechanisms supporting recency-weighted continuous decision-making remain unclear.
View Article and Find Full Text PDFFeedback processing is commonly studied by analyzing the brain's response to discrete rather than continuous events. Such studies have led to the hypothesis that rapid phasic midbrain dopaminergic activity tracks reward prediction errors (RPEs), the effects of which are measurable at the scalp via electroencephalography (EEG). Although studies using continuous feedback are sparse, recent animal work suggests that moment-to-moment changes in reward are tracked by slowly ramping midbrain dopaminergic activity.
View Article and Find Full Text PDFMuch of human behavior is governed by common processes that unfold over varying timescales. Standard event-related potential analysis assumes fixed-duration responses relative to experimental events. However, recent single-unit recordings in animals have revealed neural activity scales to span different durations during behaviors demanding flexible timing.
View Article and Find Full Text PDFNovelty and uncertainty are powerful drivers of exploration that are often conflated. In this issue of Neuron, Cockburn and colleagues dissociate the two and report a key interaction: close to task termination, novel options appear much more attractive relative to uncertain options.
View Article and Find Full Text PDFDespite disagreement about how anterior cingulate cortex (ACC) supports decision making, a recent hypothesis suggests that activity in this region is best understood in the context of a task or series of tasks. One important task-level variable is average reward because it is both a known driver of effortful behaviour and an important determiner of the tasks in which we choose to engage. Here we asked how average task value affects reward-related ACC activity.
View Article and Find Full Text PDFMany studies report atypical responses to sensory information in autistic individuals, yet it is not clear which stages of processing are affected, with little consideration given to decision-making processes. We combined diffusion modelling with high-density EEG to identify which processing stages differ between 50 autistic and 50 typically developing children aged 6-14 years during two visual motion tasks. Our pre-registered hypotheses were that autistic children would show task-dependent differences in sensory evidence accumulation, alongside a more cautious decision-making style and longer non-decision time across tasks.
View Article and Find Full Text PDFChildren with and without dyslexia differ in their behavioral responses to visual information, particularly when required to pool dynamic signals over space and time. Importantly, multiple processes contribute to behavioral responses. Here we investigated which processing stages are affected in children with dyslexia when performing visual motion processing tasks, by combining two methods that are sensitive to the dynamic processes leading to responses.
View Article and Find Full Text PDFChoices rely on a transformation of sensory inputs into motor responses. Using invasive single neuron recordings, the evolution of a choice process has been tracked by projecting population neural responses into state spaces. Here, we develop an approach that allows us to recover similar trajectories on a millisecond timescale in non-invasive human recordings.
View Article and Find Full Text PDFThere is widespread consensus that distributed circuits across prefrontal and anterior cingulate cortex (PFC/ACC) are critical for reward-based decision making. The circuit specialisations of these areas in primates were likely shaped by their foraging niche, in which decision making is typically sequential, attention-guided and temporally extended. Here, I argue that in humans and other primates, PFC/ACC circuits are functionally specialised in two ways.
View Article and Find Full Text PDFFront Neural Circuits
November 2021
Neural processing occurs across a range of temporal scales. To facilitate this, the brain uses fast-changing representations reflecting momentary sensory input alongside more temporally extended representations, which integrate across both short and long temporal windows. The temporal flexibility of these representations allows animals to behave adaptively.
View Article and Find Full Text PDFDecision-making biases can be features of normal behaviour, or deficits underlying neuropsychiatric symptoms. We used behavioural psychophysics, spiking-circuit modelling and pharmacological manipulations to explore decision-making biases during evidence integration. Monkeys showed a pro-variance bias (PVB): a preference to choose options with more variable evidence.
View Article and Find Full Text PDFVisual fixations play a vital role in decision making. Recent studies have demonstrated that the longer subjects fixate an option, the more likely they are to choose it. However, the role of evaluating stimuli covertly (i.
View Article and Find Full Text PDFNaturalistic decision-making typically involves sequential deployment of attention to choice alternatives to gather information before a decision is made. Attention filters how information enters decision circuits, thus implying that attentional control may shape how decision computations unfold. We recorded neuronal activity from three subregions of the prefrontal cortex (PFC) while monkeys performed an attention-guided decision-making task.
View Article and Find Full Text PDFThe role of orbitofrontal cortex in value-based choice is well-established from animal research, but there are challenges in relating neurophysiological recordings from animals to equivalent data from humans: a new study bridges this gap.
View Article and Find Full Text PDFCompeting accounts propose that working memory (WM) is subserved either by persistent activity in single neurons or by dynamic (time-varying) activity across a neural population. Here, we compare these hypotheses across four regions of prefrontal cortex (PFC) in an oculomotor-delayed-response task, where an intervening cue indicated the reward available for a correct saccade. WM representations were strongest in ventrolateral PFC neurons with higher intrinsic temporal stability (time-constant).
View Article and Find Full Text PDFFrequency-specific oscillations and phase-coupling of neuronal populations are essential mechanisms for the coordination of activity between brain areas during cognitive tasks. Therefore, the ongoing activity ascribed to the different functional brain networks should also be able to reorganise and coordinate via similar mechanisms. We develop a novel method for identifying large-scale phase-coupled network dynamics and show that resting networks in magnetoencephalography are well characterised by visits to short-lived transient brain states, with spatially distinct patterns of oscillatory power and coherence in specific frequency bands.
View Article and Find Full Text PDFBackground: Volatile interpersonal relationships are a core feature of borderline personality disorder (BPD) and lead to devastating disruption of patients' personal and professional lives. Quantitative models of social decision making and learning hold promise for defining the underlying mechanisms of this problem. In this study, we tested BPD and control subject weighting of social versus nonsocial information and their learning about choices under stable and volatile conditions.
View Article and Find Full Text PDFNat Rev Neurosci
February 2017
Many accounts of reward-based choice argue for distinct component processes that are serial and functionally localized. In this Opinion article, we argue for an alternative viewpoint, in which choices emerge from repeated computations that are distributed across many brain regions. We emphasize how several features of neuroanatomy may support the implementation of choice, including mutual inhibition in recurrent neural networks and the hierarchical organization of timescales for information processing across the cortex.
View Article and Find Full Text PDFInformation sampling is often biased towards seeking evidence that confirms one's prior beliefs. Despite such biases being a pervasive feature of human behavior, their underlying causes remain unclear. Many accounts of these biases appeal to limitations of human hypothesis testing and cognition, de facto evoking notions of bounded rationality, but neglect more basic aspects of behavioral control.
View Article and Find Full Text PDFCorrelates of value are routinely observed in the prefrontal cortex (PFC) during reward-guided decision making. In previous work (Hunt et al., 2015), we argued that PFC correlates of chosen value are a consequence of varying rates of a dynamical evidence accumulation process.
View Article and Find Full Text PDF