Publications by authors named "Laurence Rozes"

Noble metal nanostructured films are of great interest for various applications including electronics, photonics, catalysis, and photocatalysis. Yet, structuring and patterning noble metals, especially those of the platinum group, is challenging by conventional nanofabrication. Herein, an approach based on solution processing to obtain metal-based films (rhodium, ruthenium (Ru) or iridium in the presence of residual organic species) with nanostructuration at the 20 nm-scale is introduced.

View Article and Find Full Text PDF
Article Synopsis
  • Metal-assisted chemical etching (MACE) is a common technique for creating high aspect ratio nanostructures using metal catalysts, but researchers have now introduced oxide-assisted chemical etching (OACE) as an alternative.
  • OACE utilizes metal oxides like RuO and IrO, which can be processed similarly to polymers, allowing for large-scale and cost-effective production of nanopatterned materials.
  • This new approach significantly reduces fabrication steps for creating nanostructures and opens up opportunities for further research and innovation in chemical etching techniques for device fabrication.
View Article and Find Full Text PDF

Despite the promise of utilizing metal-organic frameworks (MOFs) as highly tunable photocatalytic materials, systematic studies that interrogate the relationship between their catalytic performances and the amount of functionalized linkers are lacking. Aminated linkers are known to enhance the absorption of light and afford photocatalysis with MOFs under visible-light irradiation. However, the manner in which the photocatalytic performances are impacted by the amount of such linkers is poorly understood.

View Article and Find Full Text PDF

Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object.

View Article and Find Full Text PDF

For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought.

View Article and Find Full Text PDF

For many important applications, the performance of polymer-anisotropic particle nanocomposite materials strongly depends on the orientation of the nanoparticles. Using the very peculiar magnetic properties of goethite (α-FeOOH) nanorods, we produced goethite-poly(hydroxyethyl methacrylate) nanocomposites in which the alignment direction and the level of orientation of the nanorods could easily be tuned by simply adjusting the intensity of a magnetic field applied during polymerization. Because the particle volume fraction was kept low (1-5.

View Article and Find Full Text PDF

Herein we discuss band gap modification of MIL-125, a TiO2/1,4-benzenedicarboxylate (bdc) metal-organic framework (MOF). Through a combination of synthesis and computation, we elucidated the electronic structure of MIL-125 with aminated linkers. The band gap decrease observed when the monoaminated bdc-NH2 linker was used arises from donation of the N 2p electrons to the aromatic linking unit, resulting in a red-shifted band above the valence-band edge of MIL-125.

View Article and Find Full Text PDF

Titanium oxo-clusters, well-defined monodispersed nano-objects, are appropriate nano-building blocks for the preparation of organic-inorganic materials by a bottom up approach. This critical review proposes to present the different structures of titanium oxo-clusters referenced in the literature and the different strategies followed to build up hybrid materials with these versatile building units. In particular, this critical review cites and reports on the most important papers in the literature, concentrating on recent developments in the field of synthesis, characterization, and the use of titanium oxo-clusters for the construction of advanced hybrid materials (137 references).

View Article and Find Full Text PDF

Achieving nanostructured or hierarchical hybrid architectures involves cross-cutting synthetic strategies where all facettes of chemistry (organic, polymers, solid-state, physical, materials chemistries, biochemistry, etc..), soft matter and ingenious processing are synergistically coupled.

View Article and Find Full Text PDF

Titanium is a very attractive candidate for MOFs due to its low toxicity, redox activity, and photocatalytic properties. We present here MIL-125, the first example of a highly porous and crystalline titanium(IV) dicarboxylate (MIL stands for Materials of Institut Lavoisier) with a high thermal stability and photochemical properties. Its structure is built up from a pseudo cubic arrangement of octameric wheels, built up from edge- or corner-sharing titanium octahedra, and terephthalate dianions leading to a three-dimensional periodic array of two types of hybrid cages with accessible pore diameters of 6.

View Article and Find Full Text PDF

New hybrid nanocomposites based on a methacrylate functionalized titanium-oxo cluster as nano-cross-linker show improved mechanical properties, optical transparency and photochromic activity.

View Article and Find Full Text PDF

Oxo alcoxo metallic clusters can be employed as inorganic nanobuilding blocks to obtain well-defined organic-inorganic hybrid materials. A better understanding of the surface reactivity of the clusters should allow optimization of the elaboration of hybrid materials through a better control of the hybrid interface. The oxo alcoxo cluster Ti(16)O(16)(OEt)32 presents a shell of labile ethoxy groups that can be selectively transalcoholyzed with preservation of the titanium oxo core, leading to new oxo alcoxo clusters Ti(16)O(16)(OEt)32-x(OR)x (R: alkyl, phenyl, styrenic, etc.

View Article and Find Full Text PDF