Publications by authors named "Laurence Ramos"

The study delves into the adsorption of sunflower proteins at the air/water interface using specular X-ray reflection. The research involved fitting models of the protein films to the reflectivity data, resulting in detailed images of the X-ray scattering length density profiles perpendicular to the air/water interface. The sunflower protein isolate that is examined consists of multiple components, and the study proposes a transition from a 1-slab model to a 4-slab model to represent the changing layer structure over time.

View Article and Find Full Text PDF
Article Synopsis
  • Soft amorphous materials, like clays and gels, are common viscoelastic solids that can transform from solid to liquid under deformation, altering their microstructure.
  • A workshop at the Lorentz Center in Leiden from January 9 to 13, 2023, focused on this yielding transition in these materials.
  • The resulting manuscript highlights key insights and open questions from discussions at the workshop, pointing to future experimental and theoretical challenges in the field.
View Article and Find Full Text PDF

We present a dynamic light scattering setup to probe, with time and space resolution, the microscopic dynamics of soft matter systems confined within millimeter-sized spherical drops. By using an ad hoc optical layout, we tackle the challenges raised by refraction effects due to the unconventional shape of the samples. We first validate the setup by investigating the dynamics of a suspension of Brownian particles.

View Article and Find Full Text PDF

We study model near-critical polymer gelling systems made of gluten protein dispersions stabilized at different distances from the gel point. We impose different shear rates and follow the time evolution of the stress. For sufficiently large shear rates, an intermediate stress overshoot is measured before reaching the steady state.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates different asymmetrical flow field-flow fractionation (AF4) techniques for analyzing self-associating wheat gluten proteins, focusing on the effects of various eluents.
  • It finds that using a denaturing buffer like sodium dodecyl sulfate (SDS) can cause proteins to aggregate during fractionation, whereas a frit-inlet device can better separate individual proteins in the same buffer.
  • Interestingly, AF4 with a mild solvent mixture of water and ethanol effectively fractions gluten proteins, highlighting the method's capability to handle both monomeric and polymeric proteins influenced by weak interactions.
View Article and Find Full Text PDF

The evaporation of drops of colloidal suspensions plays an important role in numerous contexts, such as the production of powdered dairies, the synthesis of functional supraparticles, and virus and bacteria survival in aerosols or drops on surfaces. The presence of colloidal particles in the evaporating drop eventually leads to the formation of a dense shell that may undergo a shape instability. Previous works propose that, for drops evaporating very fast, the instability occurs when the particles form a rigid porous solid, constituted of permanently aggregated particles at random close packing.

View Article and Find Full Text PDF

We use the impact of drops on a small solid target as a tool to investigate the behavior of viscoelastic fluids under extreme deformation rates. We study two classes of transient networks: semidilute solutions of supramolecular polymers and suspensions of spherical oil droplets reversibly linked by polymers. The two types of samples display very similar linear viscoelastic properties, which can be described with a Maxwell fluid model, but contrasting nonlinear properties due to different network structures.

View Article and Find Full Text PDF

We investigate freely expanding viscoelastic sheets. The sheets are produced by the impact of drops on a quartz plate covered with a thin layer of liquid nitrogen that suppresses shear viscous dissipation as a result of the cold Leidenfrost effect. The time evolution of the sheet is simultaneously recorded from top and side views using high-speed cameras.

View Article and Find Full Text PDF

The adsorption of a sunflower protein extract at two air-water and oil-water interfaces is investigated using tensiometry, dilational viscoelasticity, and ellipsometry. For both interfaces, a three step mechanism was evidenced thanks to master curve representations of the data taken at different aging times and protein concentrations. At short times, a diffusion limited adsorption of proteins at interfaces is demonstrated.

View Article and Find Full Text PDF

We investigate the structure of gluten polymer-like gels in a binary mixture of water/ethanol, 50/50 v/v, a good solvent for gluten proteins. Gluten comprises two main families of proteins, monomeric gliadins and polymer glutenins. In the semi-dilute regime, scattering experiments highlight two classes of behavior, akin to standard polymer solution and polymer gel, depending on the protein composition.

View Article and Find Full Text PDF

We investigate the delayed rupture of biopolymer gels under a constant shear load by simultaneous dynamic light scattering and rheology measurements. We unveil the crucial role of normal stresses built up during gelation: All samples that eventually fracture self-weaken during the gelation process, as revealed by a partial relaxation of the normal stress concomitant to a burst of microscopic plastic rearrangements. Upon applying a shear stress, weakened gels exhibit in the creep regime distinctive signatures in their microscopic dynamics, which anticipate macroscopic fracture by up to thousands of seconds.

View Article and Find Full Text PDF

The mechanical properties of soft matter are of great importance in countless applications, in addition of being an active field of academic research. Given the relative ease with which soft materials can be deformed, their non-linear behavior is of particular relevance. Large loads eventually result in material failure.

View Article and Find Full Text PDF

We investigate by time-resolved synchrotron ultra-small X-ray scattering the dynamics of liquid-liquid phase-separation (LLPS) of gluten protein suspensions following a temperature quench. Samples at a fixed concentration (237 mg ml) but with different protein compositions are investigated. In our experimental conditions, we show that fluid viscoelastic samples depleted in polymeric glutenin phase-separate following a spinodal decomposition process.

View Article and Find Full Text PDF

Gliadins are edible wheat storage proteins well known for their surface active properties. In this paper, we present experimental results on the interfacial properties of acidic solutions of gliadin studied over 5 decades of concentrations, from 0.001 to 110 g/L.

View Article and Find Full Text PDF

Material failure is ubiquitous, with implications from geology to everyday life and material science. It often involves sudden, unpredictable events, with little or no macroscopically detectable precursors. A deeper understanding of the microscopic mechanisms eventually leading to failure is clearly required, but experiments remain scarce.

View Article and Find Full Text PDF

Materials are the key roadblocks for the commercialization of energy conversion devices in fuel cells and solar cells. Significant research has focused on tuning the intrinsic properties of materials at the nanometer scale. The soft template mediated controlled fabrication of advanced nanostructured materials is attracting considerable interest due to the promising applications of these materials in catalysis and electrocatalysis.

View Article and Find Full Text PDF

A single-drop experiment based on the collision of one drop of liquid on a small solid target is used to produce liquid sheets that are visualized with a fast camera. Upon impact, the drop flattens into a sheet that is bounded by a thicker rim and radially expanding in air. Emulsion-based liquid sheets are destabilized through the nucleation of holes that perforate the sheet during its expansion.

View Article and Find Full Text PDF

We investigate the nucleation and propagation of cracks in self-assembled viscoelastic fluids, which are made of surfactant micelles reversibly linked by telechelic polymers. The morphology of the micelles can be continuously tuned, from spherical to rodlike to wormlike, thus producing transient double networks when the micelles are sufficiently long and entangled and transient single networks otherwise. For a single network, we show that cracks nucleate when the sample deformation rate involved is comparable to the relaxation time scale of the network.

View Article and Find Full Text PDF

The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications.

View Article and Find Full Text PDF

We study the destabilization mechanism of thin liquid sheets expanding in air and show that dilute oil-in-water emulsion-based sheets disintegrate through the nucleation and growth of holes that perforate the sheet. The velocity and thickness fields of the sheet outside the holes are not perturbed by holes, and hole opening follows the Taylor-Culick law. We find that a prehole, which widens and thins out the sheet with time, systematically precedes the hole nucleation.

View Article and Find Full Text PDF

We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries.

View Article and Find Full Text PDF

Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling.

View Article and Find Full Text PDF

The supramolecular organization of wheat gluten proteins is largely unknown due to the intrinsic complexity of this family of proteins and their insolubility in water. We fractionate gluten in a water/ethanol mixture (50/50 v/v) and obtain a protein extract which is depleted in gliadin, the monomeric part of wheat gluten proteins, and enriched in glutenin, the polymeric part of wheat gluten proteins. We investigate the structure of the proteins in the solvent used for extraction over a wide range of concentration, by combining X-ray scattering and multiangle static and dynamic light scattering.

View Article and Find Full Text PDF

We use confocal microscopy and time-resolved light scattering to investigate plasticity in a colloidal polycrystal, following the evolution of the network of grain boundaries as the sample is submitted to thousands of shear deformation cycles. The grain boundary motion is found to be ballistic, with a velocity distribution function exhibiting nontrivial power law tails. The shear-induced dynamics initially slow down, similarly to the aging of the spontaneous dynamics in glassy materials, but eventually reach a steady state.

View Article and Find Full Text PDF

The plasma membrane-cytoskeleton interface is a dynamic structure participating in a variety of cellular events. Moesin and ezrin, proteins from the ezrin/radixin/moesin (ERM) family, provide a direct linkage between the cytoskeleton and the membrane via their interaction with phosphatidylinositol 4,5-bisphosphate (PIP(2)). PIP(2) binding is considered as a prerequisite step in ERM activation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionduupbajddb1l68jnrtd52ka94g20mjfb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once