Publications by authors named "Laurence Miller"

Agonists of the secretin receptor have potential applications for diseases of the cardiovascular, gastrointestinal, and metabolic systems, yet no clinically-active non-peptidyl agonists of this receptor have yet been developed. In the current work, we have identified a new small molecule lead compound with this pharmacological profile. We have prepared and characterized a systematic structure-activity series around this thiadiazole scaffold to better understand the molecular determinants of its activity.

View Article and Find Full Text PDF

Development of optimal therapeutics for disease states that can be associated with increased membrane cholesterol requires better molecular understanding of lipid modulation of the drug target. Type 1 cholecystokinin receptor (CCK1R) agonist actions are affected by increased membrane cholesterol, enhancing ligand binding and reducing calcium signaling, while agonist actions of the closely related CCK2R are not. In this work, we identified a set of chimeric human CCK1R/CCK2R mutations that exchange the cholesterol sensitivity of these 2 receptors, providing powerful tools when expressed in CHO and HEK-293 model cell lines to explore mechanisms.

View Article and Find Full Text PDF

The functional significance of the interactions between proteins in living cells to form short-lived quaternary structures cannot be overemphasized. Yet, quaternary structure information is not captured by current methods, neither can those methods determine structure within living cells. The dynamic versatility, abundance, and functional diversity of G protein-coupled receptors (GPCRs) pose myriad challenges to existing technologies but also present these proteins as the ideal testbed for new technologies to investigate the complex inter-regulation of receptor-ligand, receptor-receptor, and receptor-downstream effector interfaces in living cells.

View Article and Find Full Text PDF

Class B G protein-coupled receptors can form dimeric complexes important for high potency biological effects. Here, we apply pharmacological, biochemical, and biophysical techniques to cells and membranes expressing the prototypic secretin receptor (SecR) to gain insights into secretin binding to homo-dimeric and monomeric SecR. Spatial proximity between peptide and receptor residues, probed by disulfide bond formation, demonstrates that the secretin N-terminus moves from adjacent to extracellular loop 3 (ECL3) at wild type SecR toward ECL2 in non-dimerizing mutants.

View Article and Find Full Text PDF
Article Synopsis
  • The Concise Guide to PHARMACOLOGY 2023/24 offers a summarized overview of approximately 1800 drug targets and around 6000 interactions with 3900 ligands, mostly in a tabular format.
  • It focuses on selective pharmacology and includes links to an open access knowledgebase for more detailed drug information.
  • The guide divides drug targets into six major categories, providing essential summaries and guidance based on the latest pharmacological data available as of mid-2023, while serving as an official resource by the International Union of Basic and Clinical Pharmacology.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing a drug to target the CCK1R receptor, potentially helping to prevent and treat obesity by enhancing the natural action of CCK, which promotes feelings of fullness.
  • The study identified promising tetracyclic molecules through high throughput screening and characterized two leading candidates that meet the desired pharmacological profile.
  • They expanded this research by testing 65 analogs, successfully eliminating an unwanted side effect while maintaining the positive allosteric modulation of the CCK1R, paving the way for future clinical trials.
View Article and Find Full Text PDF

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP.

View Article and Find Full Text PDF

Obesity has become a prevailing health burden globally and particularly in the US. It is associated with many health problems, including cardiovascular disease, diabetes and poorer mental health. Hence, there is a high demand to find safe and effective therapeutics for sustainable weight loss.

View Article and Find Full Text PDF

Class B1 G protein-coupled receptors are activated by peptides, with amino-terminal regions critical for biologic activity. Although high resolution structures exist, understanding of key features of the peptide activation domain that drive signaling is limited. In the secretin receptor (SecR) structure, interactions are observed between peptide residues His and Ser and seventh transmembrane segment (TM7) receptor residue E373.

View Article and Find Full Text PDF

The onset of the COVID-19 pandemic in early 2020 had a significant impact on the delivery of behavioral health services, with significant short-term and long-range consequences. Intertwined with the delivery of services has been the financial ramifications of the pandemic. The rapid response by governmental agencies to shore up financial support for clinical services, and the swift shift to virtual care provided relief for a broad array of practice settings; however, it did not mitigate the full impact of the pandemic.

View Article and Find Full Text PDF

Drugs useful in prevention/treatment of obesity could improve health. Cholecystokinin (CCK) is a key regulator of appetite, working through the type 1 CCK receptor (CCK1R); however, full agonists have not stimulated more weight loss than dieting. We proposed an alternate strategy to target this receptor, while reducing likelihood of side effects and/or toxicity.

View Article and Find Full Text PDF

In the cerebrospinal fluid (CSF), the demonstration of malignant cells by cytological examination is currently the gold standard for the diagnosis of leptomeningeal carcinomatosis (LC). However, a positive cytology is observed in only 50-60% of patients with LC and highly dependent on pre-analytical factors. The hematology laboratory could provide an immediate and accurate diagnosis, but diagnostic sensitivity is not always optimized once the sample is received.

View Article and Find Full Text PDF
Article Synopsis
  • The Concise Guide to Pharmacology 2021/22 offers a streamlined overview of nearly 1900 human drug targets, focusing on selective pharmacology and organized mainly in tables for quick reference.
  • The guide serves as a reliable, citable resource that distills extensive online content while ensuring it reflects the status as of mid-2021, distinct from ongoing database updates.
  • Key pharmacological targets include G protein-coupled receptors, ion channels, and enzymes, with official nomenclature and references provided to assist further research and understanding.
View Article and Find Full Text PDF

A primary goal in pain treatment is restoration of behaviors that are disrupted by pain. Measures of pain interference indicate the degree to which pain interferes with activities in pain patients, and these measures are used to evaluate the effects of analgesic drugs. As a result of the emphasis on the expression and treatment of functional impairment in clinical settings, preclinical pain researchers have attempted to develop procedures for evaluation of pain-related functional impairment in laboratory animals.

View Article and Find Full Text PDF

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates metabolism in response to the cellular energy states. Under energy stress, AMP stabilizes the active AMPK conformation, in which the kinase activation loop (AL) is protected from protein phosphatases, thus keeping the AL in its active, phosphorylated state. At low AMP:ATP (adenosine triphosphate) ratios, ATP inhibits AMPK by increasing AL dynamics and accessibility.

View Article and Find Full Text PDF

Immune-related adverse events including cardiac toxicity are increasingly described in patients receiving immune checkpoint inhibitors. We described a malignant pericardial effusion complicated by a cardiac tamponade in an advanced non-small cell lung cancer patient who had received five infusions of atezolizumab, a PDL-1 monoclonal antibody, in combination with cabozantinib. The definitive diagnosis was quickly made by cytology examination showing typical cell abnormalities and high fluorescence cell information provided by the hematology analyzer.

View Article and Find Full Text PDF

Cholecystokinin is a gastrointestinal peptide hormone with important roles in metabolic physiology and the maintenance of normal nutritional status, as well as potential roles in the prevention and management of obesity, currently one of the dominant causes of direct or indirect morbidity and mortality. In this review, we discuss the roles of this hormone and its receptors in maintaining nutritional homeostasis, with a particular focus on appetite control. Targeting this action led to the development of full agonists of the type 1 cholecystokinin receptor that have so far failed in clinical trials for obesity.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are critical regulators of cellular function acting via heterotrimeric G proteins as their primary transducers with individual GPCRs capable of pleiotropic coupling to multiple G proteins. Structural features governing G protein selectivity and promiscuity are currently unclear. Here, we used cryo-electron microscopy (cryo-EM) to determine structures of the cholecystokinin (CCK) type 1 receptor (CCK1R) bound to the CCK peptide agonist, CCK-8 and 2 distinct transducer proteins, its primary transducer Gq, and the more weakly coupled Gs.

View Article and Find Full Text PDF

Class C G protein-coupled receptors (GPCRs) are known to form stable homodimers or heterodimers critical for function, but the oligomeric status of class A and B receptors, which constitute >90% of all GPCRs, remains hotly debated. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful approach with the potential to reveal valuable insights into GPCR organization but has rarely been used in living cells to study protein systems. Here, we report generally applicable methods for using smFRET to detect and track transmembrane proteins diffusing within the plasma membrane of mammalian cells.

View Article and Find Full Text PDF

Mono Lake is a closed-basin, hypersaline, alkaline lake located in Eastern Sierra Nevada, California, that is dominated by microbial life. This unique ecosystem offers a natural laboratory for probing microbial community responses to environmental change. In 2017, a heavy snowpack and subsequent runoff led Mono Lake to transition from annually mixed (monomictic) to indefinitely stratified (meromictic).

View Article and Find Full Text PDF

The secretin receptor (SCTR) is a prototypic Class B1 G protein-coupled receptor (GPCR) that represents a key target for the development of therapeutics for the treatment of cardiovascular, gastrointestinal, and metabolic disorders. However, no non-peptidic molecules targeting this receptor have yet been disclosed. Using a high-throughput screening campaign directed at SCTR to identify small molecule modulators, we have identified three structurally related scaffolds positively modulating SCTRs.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol's general effects on the membrane is not well-understood. We performed coarse-grained molecular dynamics (CGMD) simulations coupled with structural bioinformatics approaches on the β-adrenergic receptor (βAR) and the cholecystokinin (CCK) receptor subfamily. The βAR has been shown to be sensitive to membrane cholesterol and cholesterol molecules have been clearly resolved in numerous βAR crystal structures.

View Article and Find Full Text PDF

Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • The class B secretin GPCR (SecR) has important roles in various physiological functions and potential therapeutic applications for metabolic and cardiovascular diseases.
  • A study utilized cryo-electron microscopy, molecular dynamics, and biochemical methods to determine the 2.3 Å structure of secretin bound to the SecR:Gs complex, highlighting unique interactions compared to similar proteins.
  • Findings suggest that secretin engages with SecR in a dynamic manner, with key initial interactions occurring between the peptide's N-terminus and the receptor's extracellular loops following the binding of its C-terminus.
View Article and Find Full Text PDF

The secretin receptor (SCTR), a prototypical class B G protein-coupled receptor (GPCR), exerts its effects mainly by activating Gαs proteins upon binding of its endogenous peptide ligand secretin. SCTRs can be found in a variety of tissues and organs across species, including the pancreas, stomach, liver, heart, lung, colon, kidney, and brain. Beyond that, modulation of SCTR-mediated signaling has therapeutic potential for the treatment of multiple diseases, such as heart failure, obesity, and diabetes.

View Article and Find Full Text PDF