Publications by authors named "Laurence Lestel"

Environmental imprint of inorganic fertilizer uses was assessed over the last hundred years at the downstream part of large French rivers (Loire, Moselle, Rhine, Rhone, Meuse and Seine rivers) based on Potassium-40 (K) activity concentration data sets acquired from soil monitoring (1980-2022) and from sediment coes collected from 2020 to 2022 to reconstruct the temporal trajectories of K activity concentrations since the beginning of the last century. Cultivated soils were significantly enriched in K compared to non-cultivated ones in the 1980s and 1990s when they turned back to the contents of non-cultivated soils during the following decades. In riverine sediments, all the rivers displayed close K temporal trajectories with peaking K contents in fine grain size sediments in the 1980s.

View Article and Find Full Text PDF

Cs is a long-lived man-made radionuclide introduced in the environment worldwide at the early beginning of the nuclear Era during atmospheric nuclear testing's followed by the civil use of nuclear energy. Atmospheric fallout deposition of this major artificial radionuclide was reconstructed at the scale of French large river basins since 1945, and trajectories in French nuclearized rivers were established using sediment coring. Our results show that Cs contents in sediments of the studied rivers display a large spatial and temporal variability in response to the various anthropogenic pressures exerted on their catchment.

View Article and Find Full Text PDF

Platinum (Pt) is a Technology Critical Element (TCE) which, since the 1990s, has been mainly used in the industry in catalytic converters for automobile emission control. Previous studies have shown Pt contamination of road-side sediments and surface sediments in urban rivers and lakes but few of them have addressed temporal variations. The present work presents historical Pt concentration trends in Cs-dated sediment cores from floodplains or secondary channels at the outlets of three major French watersheds (Loire, Rhone, and Seine Rivers) covering the past ∼110 years, i.

View Article and Find Full Text PDF

Situating prehistoric sites in their past environment helps us to understand their functionality and the organization of early sedentary human societies. However, this is a challenge as the natural environment constantly evolves through time and erases these constructions, especially along riverbanks, thus biasing the archaeological record. This study introduces a reassessment of the paleo-landscape evolution around the Neolithic enclosures at the Noyen-sur-Seine site based on new field observations as well as the synthesis of (un)published and new radiocarbon dating.

View Article and Find Full Text PDF

Military conflicts result in local environmental damage, but documenting regional and larger scale impacts such as heavy metal pollution has proven elusive. Anthropogenic emissions of bismuth (Bi) include coal burning and various commodity productions but no emission estimates over the past century exist. Here we used Bi measurements in ice cores from the French Alps to show evidence of regional-scale Bi pollution concurrent with the Spanish Civil War and World War II.

View Article and Find Full Text PDF

The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni.

View Article and Find Full Text PDF

River basin metal pollution originates from heavy industries (plating, automobile) and from urban sources (Paris conurbation: 2740 km(2), 9.47 million inhabitants). The natural sources of metal have been found to be limited due to sedimentary nature of this catchment and to the very low river sediment transport (10 t km(-2) y(-1)).

View Article and Find Full Text PDF