differentiation of human induced pluripotent stem cells (iPSCs) into beta cells represents an important cell source for diabetes research. Here, we fully characterized iPSC-derived beta cell function and in humanized mice. Using a 7-stage protocol, human iPSCs were differentiated into islet-like aggregates with a yield of insulin-positive beta cells comparable to that of human islets.
View Article and Find Full Text PDFObjective: DNAJC3, also known as P58IPK, is an Hsp40 family member that interacts with and inhibits PKR-like ER-localized eIF2α kinase (PERK). Dnajc3 deficiency in mice causes pancreatic β-cell loss and diabetes. Loss-of-function mutations in DNAJC3 cause early-onset diabetes and multisystemic neurodegeneration.
View Article and Find Full Text PDFCytokine-induced endoplasmic reticulum (ER) stress is one of the molecular mechanisms underlying pancreatic β-cell demise in type 1 diabetes. Thrombospondin 1 (THBS1) was recently shown to promote β-cell survival during lipotoxic stress. Here we show that ER-localized THBS1 is cytoprotective to rat, mouse, and human β-cells exposed to cytokines or thapsigargin-induced ER stress.
View Article and Find Full Text PDFPancreatic β-cell lipotoxicity is a central feature of the pathogenesis of type 2 diabetes. To study the mechanism by which fatty acids cause β-cell death and develop novel approaches to prevent it, a high-throughput screen on the β-cell line INS1 was carried out. The cells were exposed to palmitate to induce cell death and compounds that reversed palmitate-induced cytotoxicity were ascertained.
View Article and Find Full Text PDFDeficient as well as excessive/prolonged endoplasmic reticulum (ER) stress signaling can lead to pancreatic β cell failure and the development of diabetes. Saturated free fatty acids (FFAs) such as palmitate induce lipotoxic ER stress in pancreatic β cells. One of the main ER stress response pathways is under the control of the protein kinase R-like endoplasmic reticulum kinase (PERK), leading to phosphorylation of the eukaryotic translation initiation factor 2 (eIF2α).
View Article and Find Full Text PDFType 1 diabetes (T1D) is an autoimmune disease leading to β-cell destruction. MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression and organ formation. They participate in the pathogenesis of several autoimmune diseases, but the nature of miRNAs contributing to β-cell death in T1D and their target genes remain to be clarified.
View Article and Find Full Text PDFScope: A major goal of diabetes therapy is to identify novel drugs that preserve or expand pancreatic beta cell mass. Here, we examined the effect of a phenylpropenoic acid glucoside (PPAG) on the beta cell mass, and via which mechanism this effect is established.
Methods And Results: Mice were fed a high-fat and fructose-containing diet to induce obesity and hyperglycemia.
Objective: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused in almost all cases by homozygosity for a GAA trinucleotide repeat expansion in the frataxin gene. Frataxin is a mitochondrial protein involved in iron homeostasis. FRDA patients have a high prevalence of diabetes, the pathogenesis of which is not known.
View Article and Find Full Text PDFTo shed light on islet cell molecular phenotype in human type 2 diabetes (T2D), we studied the transcriptome of non-diabetic (ND) and T2D islets to then focus on the ubiquitin-proteasome system (UPS), the major protein degradation pathway. We assessed gene expression, amount of ubiquitinated proteins, proteasome activity, and the effects of proteasome inhibition and prolonged exposure to palmitate. Microarray analysis identified more than one thousand genes differently expressed in T2D islets, involved in many structures and functions, with consistent alterations of the UPS.
View Article and Find Full Text PDFThe prevalence of obesity and type 1 diabetes in children is increasing worldwide. Insulin resistance and augmented circulating free fatty acids associated with obesity may cause pancreatic β-cell endoplasmic reticulum (ER) stress. We tested the hypothesis that mild ER stress predisposes β-cells to an exacerbated inflammatory response when exposed to IL-1β or TNF-α, cytokines that contribute to the pathogenesis of type 1 diabetes.
View Article and Find Full Text PDFSecond generation n3-PUFA-depleted rats represent a good animal model of metabolic syndrome as they display several features of the disease such as liver steatosis, visceral obesity and insulin resistance. The goal of our study was to investigate the influence of n3-PUFA deficiency on hepatic glycerol metabolism. Aquaglyceroporin 9 (AQP9) allows hepatic glycerol transport and consequently contributes to neoglucogenesis.
View Article and Find Full Text PDFBackground: Free fatty acids cause pancreatic beta-cell apoptosis and may contribute to beta-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. Eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation is an adaptive response to ER stress, and reductions in eIF2alpha phosphorylation trigger beta-cell failure. Salubrinal inhibits eIF2alpha dephosphorylation and has been proposed as a novel therapy for diabetes.
View Article and Find Full Text PDFObjective: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha + IFN-gamma in primary rat beta-cells.
View Article and Find Full Text PDFObjective: Chronic exposure of pancreatic beta-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to beta-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of beta-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes.
Research Design And Methods: INS-1E or fluorescence-activated cell sorter-purified primary rat beta-cells were exposed to oleate or palmitate with or without the GLP-1 agonist exendin-4 or forskolin.
The UPR (unfolded protein response) or ER (endoplasmic reticulum) stress response was first described 20 years ago. The field of ER stress has expanded tremendously since, moving from basic biology in yeast to human neurodegenerative, inflammatory, cardiovascular and neoplastic diseases. The ER stress response has also been implicated in diabetes development, affecting both insulin production by pancreatic beta-cells and insulin sensitivity in peripheral tissues.
View Article and Find Full Text PDFFree fatty acids (FFA) cause apoptosis of pancreatic beta-cells and might contribute to beta-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. We studied here the molecular mechanisms implicated in FFA-induced ER stress initiation and apoptosis in INS-1E cells, FACS-purified primary beta-cells and human islets exposed to oleate and/or palmitate. Treatment with saturated and/or unsaturated FFA led to differential ER stress signaling.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2007
We have explored the threshold of tolerance of three unrelated cell types to treatments with potential cytoprotective peptides bound to Tat(48-57) and Antp(43-58) cell-permeable peptide carriers. Both Tat(48-57) and Antp(43-58) are well known for their good efficacy at crossing membranes of different cell types, their overall low toxicity, and their absence of leakage once internalised. Here, we show that concentrations of up to 100 microM of Tat(48-57) were essentially harmless in all cells tested, whereas Antp(43-58) was significantly more toxic.
View Article and Find Full Text PDFObjective: Exposure of beta-cells to inflammatory cytokines leads to apoptotic cell death through the activation of gene networks under the control of specific transcription factors, such as interferon-gamma-induced signal transducer and activator of transcription (STAT)-1. We previously demonstrated that beta-cells lacking STAT-1 are resistant to cytokine-induced cell death in vitro. The aim of this study was to investigate the effect of STAT-1 elimination on immune-mediated beta-cell destruction in vivo.
View Article and Find Full Text PDFFree fatty acids cause pancreatic beta-cell apoptosis and may contribute to beta-cell loss in type 2 diabetes via the induction of endoplasmic reticulum stress. Reductions in eukaryotic translation initiation factor (eIF) 2alpha phosphorylation trigger beta-cell failure and diabetes. Salubrinal selectively inhibits eIF2alpha dephosphorylation, protects other cells against endoplasmic reticulum stress-mediated apoptosis, and has been proposed as a beta-cell protector.
View Article and Find Full Text PDFbeta-cells under immune attack are destroyed by the aberrant activation of key intracellular signaling cascades. The aim of the present study was to evaluate the contribution of the signal transducer and activator of transcription (STAT)-1 pathway for beta-cell apoptosis by studying the sensitivity of beta-cells from STAT-1 knockout (-/-) mice to immune-mediated cell death in vitro and in vivo. Whole islets from STAT-1-/- mice were completely resistant to interferon (IFN)-gamma (studied in combination with interleukin [IL]-1beta)-mediated cell death (92 +/- 4% viable cells in STAT-1-/- mice vs.
View Article and Find Full Text PDFViral infections and local production of cytokines probably contribute to the pathogenesis of Type 1 diabetes. The viral replicative intermediate double-stranded RNA (dsRNA, tested in the form of polyinosinic-polycytidylic acid, PIC), in combination with the cytokine interferon-gamma (IFN-gamma), triggers beta-cell apoptosis. We have previously observed by microarray analysis that PIC induces expression of several mRNAs encoding for genes downstream of Toll-like receptor 3 (TLR3) signaling pathway.
View Article and Find Full Text PDFApoptosis is probably the main form of beta-cell death in both type 1 diabetes mellitus (T1DM) and T2DM. In T1DM, cytokines contribute to beta-cell destruction through nuclear factor-kappaB (NF-kappaB) activation. Previous studies suggested that in T2DM high glucose and free fatty acids (FFAs) are beta-cell toxic also via NF-kappaB activation.
View Article and Find Full Text PDFThis study aims at assessing the conversion of exogenous D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]-fructose (10 mM) to 13C-enriched and either hydrogenated or deuterated D-glucose, L-lactate and L-alanine released by rat liver cells prepared from Goto-Kakizaki rats and incubated for 120 min in the presence of unlabelled D-glucose (also 10 mM) and D2O. The results of this study are relevant to the relative contribution of fructokinase and hexokinase isoenzyme to the phosphorylation of D-fructose, the capacity of D-glucose to confer to glucokinase positive cooperativity towards D-fructose, the circulation of D-fructose 6-phosphate in the pentose phosphate pathway, the regulation of the cytosolic NADD/NADH ratio, the respective fate of D-fructose-derived D-glyceraldehyde and dihydroxyacetone phosphate, the deuteration of fructose-derived glycolytic intermediates at the phosphoglucoisomerase, phosphomannoisomerase, enolase, pyruvate kinase and glutamate-alanine transaminase levels, and the unequal generation of L-[1-13C]lactate by cells exposed to D-[1-13C]fructose or D-[6-13C]fructose versus D-[2-13C]-fructose.
View Article and Find Full Text PDF