Publications by authors named "Laurence Jacob"

Redox initiated emulsion polymerisation of vinyl acetate and neodecanoic acid vinyl ester was investigated at temperatures ranging from -1 °C to 87 °C (initiation temperature between -1 °C and 60 °C), using varying molar ratios of the following redox components: l-ascorbic acid, -butyl hydroperoxide and ammonium iron(iii) sulfate dodecahydrate as a catalyst. The high flexibility of redox initiators enables product properties, as well as space-time-yield, to be adjusted as required. Polymers being products by process, it was presumed that modifying the conversion rate would lead to a different product.

View Article and Find Full Text PDF

The scale-up process of the high solid content (up to 67 wt%) emulsion polymerisation of vinyl acetate and Versa10 from 1 L over 10 L to 100 L was investigated. An emulsion copolymerisation of vinyl acetate and neodecanoic acid vinyl ester in a molar ratio of 9:1 was carried out in a starved-fed semi-batch operation. As a radical source, a redox initiator system consisting of L-ascorbic acid, tert-butyl hydroperoxide and ammonium iron (III) sulphate was used.

View Article and Find Full Text PDF

The photon density wave (PDW) spectroscopy is established in the fields of biochemistry and food chemistry as an online analytical method for the determination of mean particle sizes. This work examines PDW spectroscopy regarding its potential in high solid content emulsion polymerization. For this reason, emulsion copolymerization with a tendency for agglomeration of vinyl acetate and Versa® 10 in a molar ratio of 9 : 1, and with varying emulsifier content, was carried out in semi-batch operation mode with different target particle sizes from 50 to 325 nm.

View Article and Find Full Text PDF

Amorphous solid dispersions (ASD) are increasingly used to improve the oral bioavailability of poorly water-soluble compounds. However, hydrophilic polymers in ASD have high water-binding properties and, upon water contact, they often form a gel on the surface of the tablet, impacting the rate and extent of drug release. Most inorganic salts decrease water solubility of organic solutes, changing the gel properties of hydrophilic polymers.

View Article and Find Full Text PDF

Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed.

View Article and Find Full Text PDF

Background: Facial expressions of emotions represent classic stimuli for the study of social cognition. Developing virtual dynamic facial expressions of emotions, however, would open-up possibilities, both for fundamental and clinical research. For instance, virtual faces allow real-time Human-Computer retroactions between physiological measures and the virtual agent.

View Article and Find Full Text PDF

Purpose: Development of a novel, rapid, miniaturized approach to identify amorphous solid dispersions with maximum supersaturation and solid state stability.

Method: Three different miniaturized assays are combined in a 2-step decision process to assess the supersaturation potential and drug-polymer miscibility and stability of amorphous compositions. Step 1: SPADS dissolution assay.

View Article and Find Full Text PDF

Purpose: Development of a method to assess the drug/polymer miscibility and stability of solid dispersions using a melt-based mixing method.

Methods: Amorphous fractured films are prepared and characterized with Raman Microscopy in combination with Atomic Force Microscopy to discriminate between homogenously and heterogeneously mixed drug/polymer combinations. The homogenous combinations are analyzed further for physical stability under stress conditions, such as increased humidity or temperature.

View Article and Find Full Text PDF