Publications by authors named "Laurence Godiard"

The endoplasmic reticulum (ER) is the entry point to the secretory pathway and, as such, is critical for adaptive responses to biotic stress, when the demand for de novo synthesis of immunity-related proteins and signalling components increases significantly. Successful phytopathogens have evolved an arsenal of small effector proteins which collectively reconfigure multiple host components and signalling pathways to promote virulence; a small, but important, subset of which are targeted to the endomembrane system including the ER. We identified and validated a conserved C-terminal tail-anchor motif in a set of pathogen effectors known to localize to the ER from the oomycetes Hyaloperonospora arabidopsidis and Plasmopara halstedii (downy mildew of Arabidopsis and sunflower, respectively) and used this protein topology to develop a bioinformatic pipeline to identify putative ER-localized effectors within the effectorome of the related oomycete, Phytophthora infestans, the causal agent of potato late blight.

View Article and Find Full Text PDF

The host range of parasites is an important factor in assessing the dynamics of disease epidemics. The evolution of pathogens to accommodate new hosts may lead to host range expansion, a process the molecular bases of which are largely enigmatic. The fungus Sclerotinia sclerotiorum has been reported to parasitize more than 400 plant species from diverse eudicot families while its close relative, S.

View Article and Find Full Text PDF

Long-read sequencing technologies are having a major impact on our approaches to studying non-model organisms and microbial communities. By significantly reducing the cost and facilitating the genome assembly pipelines, any laboratory can now develop its own genomics program regardless of the complexity of the genome studied. The most crucial current challenge is to develop efficient protocols for extracting genomic DNA (gDNA) with high quality and integrity adapted to the organism of interest.

View Article and Find Full Text PDF

Pathogen infection triggers extensive reprogramming of the plant transcriptome, including numerous genes the function of which is unknown. Due to their wide taxonomic distribution, genes encoding proteins with Domains of Unknown Function (DUFs) activated upon pathogen challenge likely play important roles in disease. In , we identified thirteen genes harboring a DUF4228 domain in the top 10% most induced genes after infection by the fungal pathogen Based on functional information collected through homology and contextual searches, we propose to refer to this domain as the pathogen and abiotic stress response, cadmium tolerance, disordered region-containing (PADRE) domain.

View Article and Find Full Text PDF

The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified and mapped 22 major resistance genes against downy mildew in sunflowers, but only a few have been widely used in crops, leading to the emergence of new virulent pathotypes.
  • A study analyzed 12 novel resistant sources from wild species and ecotypes, all effective against 16 downy mildew pathotypes, and mapped their resistance genes on the sunflower reference genome.
  • The research identified ten potentially new resistance genes and physically mapped them alongside previously reported ones, marking the first large-scale mapping of these genes in sunflowers and discussing nomenclature for future sequencing efforts.
View Article and Find Full Text PDF

Over the last 40 years, new sunflower downy mildew isolates (Plasmopara halstedii) have overcome major gene resistances in sunflower, requiring the identification of additional and possibly more durable broad-spectrum resistances. Here, 354 RXLR effectors defined in silico from our new genomic data were classified in a network of 40 connected components sharing conserved protein domains. Among 205 RXLR effector genes encoding conserved proteins in 17 P.

View Article and Find Full Text PDF

is an obligate biotrophic oomycete causing downy mildew disease on sunflower, , an economically important oil crop. Severe symptoms of the disease (e.g.

View Article and Find Full Text PDF

The obligate biotroph oomycete Plasmopara halstedii causes downy mildew on sunflower crop, Helianthus annuus. The breakdown of several Pl resistance genes used in sunflower hybrids over the last 25 years came along with the appearance of new Pl. halstedii isolates showing modified virulence profiles.

View Article and Find Full Text PDF

Unlabelled: Downy mildew of sunflower is caused by Plasmopara halstedii (Farlow) Berlese & de Toni. Plasmopara halstedii is an obligate biotrophic oomycete pathogen that attacks annual Helianthus species and cultivated sunflower, Helianthus annuus. Depending on the sunflower developmental stage at which infection occurs, the characteristic symptoms range from young seedling death, plant dwarfing, leaf bleaching and sporulation to the production of infertile flowers.

View Article and Find Full Text PDF

Major gene resistance to sunflower downy mildew (Plasmopara halstedii) races 304 and 314 was found to segregate independently from the resistance to races 334, 307 and 304 determined by the gene Pl2, already positioned on Linkage Group (LG) 8 of sunflower molecular maps. Using a consensus SSR-SNP map constructed from the INEDI RIL population and a new RIL population FU × PAZ2, the positions of Pl2 and Pl5 were confirmed and the new gene, denoted Pl21, was mapped on LG13, at 8 cM from Pl5. The two RIL populations were observed for their quantitative resistance to downy mildew in the field and both indicated the existence of a QTL on LG8 at 20-40 cM from the major resistance gene cluster.

View Article and Find Full Text PDF

This study aimed at defining the role of a basic helix-loop-helix (bHLH) transcription factor gene from Medicago truncatula, MtbHLH1, whose expression is upregulated during the development of root nodules produced upon infection by rhizobia bacteria. We used MtbHLH1 promoter::GUS fusions and quantitative reverse-transcription polymerase chain reaction analyses to finely characterize the MtbHLH1 expression pattern. We altered MtbHLH1 function by expressing a dominantly repressed construct (CRES-T approach) and looked for possible MtbHLH1 target genes by transcriptomics.

View Article and Find Full Text PDF
Article Synopsis
  • Remorin proteins are believed to be crucial for cellular signaling and have been linked to plant interactions with pathogens, but their role in host-bacteria interactions was previously unknown.
  • The study focused on the root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti, revealing that a specific remorin protein is induced during nodulation.
  • This remorin protein binds to the host's plasma membrane, regulating infection and rhizobia release while interacting with key symbiotic receptors that sense bacterial signals, suggesting it acts as a plant-specific scaffolding protein.
View Article and Find Full Text PDF

We set up a large-scale suppression subtractive hybridization (SSH) approach to identify Medicago truncatula genes differentially expressed at different stages of the symbiotic interaction with Sinorhizobium meliloti, with a particular interest for regulatory genes. We constructed 7 SSH libraries covering successive stages from Nod factor signal transduction to S. meliloti infection, nodule organogenesis, and functioning.

View Article and Find Full Text PDF

In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up- or down-regulated at different stages of the nodulation process.

View Article and Find Full Text PDF

Bacterial wilt, one of the most devastating bacterial diseases of plants worldwide, is caused by Ralstonia solanacearum and affects many important crop species. We show that several strains isolated from solanaceous crops in Europe are pathogenic in different accessions of Arabidopsis thaliana. One of these strains, 14.

View Article and Find Full Text PDF

We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5'- and 3'-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.

View Article and Find Full Text PDF