Publications by authors named "Laurence Fayadat-Dilman"

Posttranslational modifications (PTMs) are potential critical quality attributes in biotherapeutic development, as they can affect drug efficacy and safety. Tyrosine sulfation plays a critical role in protein-protein interactions and has been found on many surface receptors as well as antibody complementarity-determining regions (CDR). However, the presence and function of tyrosine sulfation in therapeutic proteins have not been broadly investigated due to difficulties in detecting the modification.

View Article and Find Full Text PDF

Aggregation of protein-based therapeutics can occur during development, production, or storage and can lead to loss of efficacy and potential toxicity. Native mass spectrometry of a covalently linked pentameric monoclonal antibody complex with a mass of ∼800 kDa reveals several distinct conformations, smaller complexes, and abundant higher-order aggregates of the pentameric species. Charge detection mass spectrometry (CDMS) reveals individual oligomers up to the pentamer mAb trimer (15 individual mAb molecules; ∼2.

View Article and Find Full Text PDF

Identification of favorable biophysical properties for protein therapeutics as part of developability assessment is a crucial part of the preclinical development process. Successful prediction of such properties and bioassay results from calculated features has potential to reduce the time and cost of delivering clinical-grade material to patients, but nevertheless has remained an ongoing challenge to the field. Here, we demonstrate an automated and flexible machine learning workflow designed to compare and identify the most powerful features from computationally derived physiochemical feature sets, generated from popular commercial software packages.

View Article and Find Full Text PDF

Production of site-specific cysteine-engineered antibody-drug conjugates (ADCs) in mammalian cells may produce developability challenges, fragments, and heterogenous molecules, leading to potential product critical quality attributes in later development stages. Liquid phase chromatography with mass spectrometry (LC-MS) is widely used to evaluate antibody impurities and drug-to-antibody ratio, but faces challenges in analysis of fragment product variants of cysteine-engineered ADCs and oligonucleotide-to-antibody ratio (OAR) species of antibody-oligonucleotide conjugates (AOCs). Here, for the first time, we report novel capillary zone electrophoresis (CZE)-MS approaches to address the challenges above.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICI) have radically changed cancer therapy, but most patients with cancer are unresponsive or relapse after treatment. MK-5890 is a CD27 agonist antibody intended to complement ICI therapy. CD27 is a member of the tumor necrosis factor receptor superfamily that plays a critical role in promoting responses of T cells, B cells and NK cells.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic and particularly the emerging variants have deepened the need for widely available therapeutic options. We have demonstrated that hexamer-enhancing mutations in the Fc region of anti-SARS-CoV IgG antibodies lead to a noticeable improvement in IC in both pseudo and live virus neutralization assay compared to parental molecules. We also show that hexamer-enhancing mutants improve C1q binding to target surface.

View Article and Find Full Text PDF

Despite recent advances in transgenic animal models and display technologies, humanization of mouse sequences remains one of the main routes for therapeutic antibody development. Traditionally, humanization is manual, laborious, and requires expert knowledge. Although automation efforts are advancing, existing methods are either demonstrated on a small scale or are entirely proprietary.

View Article and Find Full Text PDF

Human/humanized IgG4 antibodies have reduced effector function relative to IgG1 antibodies, which is desirable for certain therapeutic purposes. However, the developability and biophysical properties for IgG4 antibodies are not well understood. This work focuses on the head-to-head comparison of key biophysical properties, such as self-interaction and viscosity, for 14 human/humanized, and chimeric IgG1 and IgG4 S228P monoclonal antibody pairs that contain the identical variable regions.

View Article and Find Full Text PDF

Human Arginase 1 (hArg1) is a metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea, and modulates T-cell-mediated immune response. Arginase-targeted therapies have been pursued across several disease areas including immunology, oncology, nervous system dysfunction, and cardiovascular dysfunction and diseases. Currently, all published hArg1 inhibitors are small molecules usually less than 350 Da in size.

View Article and Find Full Text PDF

Reversible antibody self-association, while having major developability and therapeutic implications, is not fully understood or readily predictable and correctable. For a strongly self-associating humanized mAb variant, resulting in unacceptable viscosity, the monovalent affinity of self-interaction was measured in the low μM range, typical of many specific and biologically relevant protein-protein interactions. A face-to-face interaction model extending across both the heavy-chain (HC) and light-chain (LC) Complementary Determining Regions (CDRs) was apparent from biochemical and mutagenesis approaches as well as computational modeling.

View Article and Find Full Text PDF

We report the novel crystal structure and characterization of symmetrical, homodimeric humanized heavy-chain-only antibodies or dimers (HC2s). HC2s were found to be significantly coexpressed and secreted along with mAbs from transient CHO HC/LC cotransfection, resulting in an unacceptable mAb developability attribute. Expression of full-length HC2s in the absence of LC followed by purification resulted in HC2s with high purity and thermal stability similar to conventional mAbs.

View Article and Find Full Text PDF

Characterization of charge heterogeneity in monoclonal antibodies (mAbs) is needed during developability assessment and downstream development of drug candidates. Charge heterogeneity can come from post-translational modifications like deamidation, isomerization, and sialylation. Elucidation of charge variants with mass spectrometry (MS) has historically been challenging.

View Article and Find Full Text PDF

Monoclonal antibodies play an increasingly important role for the development of new drugs across multiple therapy areas. The term 'developability' encompasses the feasibility of molecules to successfully progress from discovery to development via evaluation of their physicochemical properties. These properties include the tendency for self-interaction and aggregation, thermal stability, colloidal stability, and optimization of their properties through sequence engineering.

View Article and Find Full Text PDF

The programmed cell death 1 (PD-1) pathway represents a major immune checkpoint, which may be engaged by cells in the tumor microenvironment to overcome active T-cell immune surveillance. Pembrolizumab (Keytruda®, MK-3475) is a potent and highly selective humanized mAb of the IgG4/kappa isotype designed to directly block the interaction between PD-1 and its ligands, PD-L1 and PD-L2. This blockade enhances the functional activity of T cells to facilitate tumor regression and ultimately immune rejection.

View Article and Find Full Text PDF

NMR measurements of rotational and translational diffusion are used to characterize the solution behavior of a wide variety of therapeutic proteins and peptides. The timescales of motions sampled in these experiments reveal complicated intrinsic solution behavior such as flexibility, that is central to function, as well as self-interactions, stress-induced conformational changes and other critical attributes that can be discovery and development liabilities. Trends from proton transverse relaxation (R ) and hydrodynamic radius (R ) are correlated and used to identify and differentiate intermolecular from intramolecular interactions.

View Article and Find Full Text PDF

Assessment of the factors that regulate antibody exposure-response relationships in the relevant animal models is critical for the design of successful translational strategies from discovery to the clinic. Depending on the specific clinical indication, preclinical development paradigms may require that the efficacy or dosing-related attributes for the existing antibody be assessed in various species when cross-reactivity of the lead antibody to the intended species is justified. Additionally, with the success of monoclonal antibodies for management of various human conditions, a parallel interest in therapeutic use of these novel modalities in various veterinary species has followed.

View Article and Find Full Text PDF

Glucocorticoids (GCs) are excellent anti-inflammatory drugs but are dose-limited by on-target toxicity. We sought to solve this problem by delivering GCs to immune cells with antibody-drug conjugates (ADCs) using antibodies containing site-specific incorporation of a non-natural amino acid, novel linker chemistry for in vitro and in vivo stability, and existing and novel glucocorticoid receptor (GR) agonists as payloads. We directed fluticasone propionate to human antigen-presenting immune cells to afford GR activation that was dependent on the targeted antigen.

View Article and Find Full Text PDF

Programmed death ligand 1 (PD-L1) is an immune regulatory ligand that binds to the T-cell immune check point programmed death 1. Tumor expression of PD-L1 is correlated with immune suppression and poor prognosis. It is also correlated with therapeutic efficacy of programmed death 1 and PD-L1 inhibitors.

View Article and Find Full Text PDF

Background: Thymic stromal lymphopoietin (TSLP) is an attractive therapeutic target for the treatment of allergic diseases, and plasma TSLP is a potential patient selection marker in the development of therapeutic agents.

Results: We developed and validated an ultrasensitive electrochemiluminescence assay for measurement of TSLP in plasma with a lower limit of quantitation of 0.12 pg/ml, which allowed the quantitation of TSLP in approximately 90% of human plasma samples tested.

View Article and Find Full Text PDF

Regenerating islet-derived family member, 4 (Reg IV) is a secreted protein and member of the C-type lectin superfamily. Expression analyses have characterized Reg IV as a prognostic marker for certain cancers; however, the functional role of Reg IV in cancer, including downstream signaling, has only begun to be elucidated. To investigate the biological role of Reg IV in cancer, phosphorylation events were studied in cancer cell lines in the context of either Reg IV stimulation (HCT116 cells) or knockdown of endogenous Reg IV (PC3 and KM12 cells).

View Article and Find Full Text PDF

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine secreted by a subset of memory T cells and other innate immune cells. It is associated with rheumatoid arthritis (RA) due to IL-17A expression in RA synovial fluid. The severe bone erosive rat adjuvant-induced arthritis (rAIA) and mouse collagen-induced arthritis (mCIA) models were used to address the therapeutic efficacy of anti-IL-17A treatment with a focused investigation on bone protection.

View Article and Find Full Text PDF

Introduction: Anterior-gradient 2 (AGR2) is an estrogen-responsive secreted protein. Its upregulation has been well documented in a number of cancers, particularly breast cancer, for which mixed data exist on the prognostic implications of AGR2 expression. Although emerging evidence indicates that AGR2 is associated with poor prognosis, its function and impact on cancer-relevant pathways have not been elucidated in breast cancer.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: