Publications by authors named "Laurence Cathala"

In the mammalian neocortex, GABAergic interneurons (INs) inhibit cortical networks in profoundly different ways. The extent to which this depends on how different INs process excitatory signals along their dendrites is poorly understood. Here, we reveal that the functional specialization of two major populations of cortical INs is determined by the unique association of different dendritic integration modes with distinct synaptic organization motifs.

View Article and Find Full Text PDF

Synaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling.

View Article and Find Full Text PDF

Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging.

View Article and Find Full Text PDF

Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites.

View Article and Find Full Text PDF

Interneurons are critical for neuronal circuit function, but how their dendritic morphologies and membrane properties influence information flow within neuronal circuits is largely unknown. We studied the spatiotemporal profile of synaptic integration and short-term plasticity in dendrites of mature cerebellar stellate cells by combining two-photon guided electrical stimulation, glutamate uncaging, electron microscopy, and modeling. Synaptic activation within thin (0.

View Article and Find Full Text PDF

Cerebellar granule (CG) cells generate high-frequency action potentials that have been proposed to depend on the unique properties of their voltage-gated ion channels. To address the in vivo function of Nav1.6 channels in developing and mature CG cells, we combined the study of the developmental expression of Nav subunits with recording of acute cerebellar slices from young and adult granule-specific Scn8a KO mice.

View Article and Find Full Text PDF

To act as computational devices, neurons must perform mathematical operations as they transform synaptic and modulatory input into output firing rate. Experiments and theory indicate that neuronal firing typically represents the sum of synaptic inputs, an additive operation, but multiplication of inputs is essential for many computations. Multiplication by a constant produces a change in the slope, or gain, of the input-output relationship, amplifying or scaling down the sensitivity of the neuron to changes in its input.

View Article and Find Full Text PDF

At many excitatory and inhibitory synapses throughout the nervous system, postsynaptic currents become faster as the synapse matures, primarily owing to changes in receptor subunit composition. The origin of the developmental acceleration of AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) remains elusive. We used patch-clamp recordings, electron microscopic immunogold localization of AMPARs, partial three-dimensional reconstruction of the neuropil and numerical simulations of glutamate diffusion and AMPAR activation to examine the factors underlying the developmental speeding of miniature EPSCs in mouse cerebellar granule cells.

View Article and Find Full Text PDF

The timing of action potentials is an important determinant of information coding in the brain. The shape of the EPSP has a key influence on the temporal precision of spike generation. Here we use dynamic clamp recording and passive neuronal models to study how developmental changes in synaptic conductance waveform and intrinsic membrane properties combine to affect the EPSP and action potential generation in cerebellar granule cells.

View Article and Find Full Text PDF

Furosemide is a diuretic which has been shown to decrease recombinant GABA(A) receptor (GABA(A)R)-mediated currents and also to block epileptiform discharges. Here, we show that furosemide actions on GABA(A)Rs of rat substantia nigra dopaminergic neurones depend on both furosemide and GABA(A)R agonist concentrations. The whole-cell currents induced by low concentrations of GABA (5 microM) or by the selective GABA(A)R agonist isoguvacine (7-25 microM) were enhanced by 200 microM furosemide.

View Article and Find Full Text PDF