Ni-rich layered oxide cathode materials such as LiNiMnCoO (NMC811) are widely tipped as the next-generation cathodes for lithium-ion batteries. The NMC class offers high capacities but suffers an irreversible first cycle capacity loss, a result of slow Li diffusion kinetics at a low state of charge. Understanding the origin of these kinetic hindrances to Li mobility inside the cathode is vital to negate the first cycle capacity loss in future materials design.
View Article and Find Full Text PDFCarbon monoxide (CO)-releasing molecules (CORMs), mostly metal carbonyl compounds, are extensively used as experimental tools to deliver CO, a biological 'gasotransmitter', in mammalian systems. CORMs are also explored as potential novel antimicrobial drugs, effectively and rapidly killing bacteria in vitro and in animal models, but are reportedly benign towards mammalian cells. Ru-carbonyl CORMs, exemplified by CORM-3 (Ru(CO)Cl(glycinate)), exhibit the most potent antimicrobial effects against Escherichia coli.
View Article and Find Full Text PDF