Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody.
View Article and Find Full Text PDFEthanol ablation is a minimally invasive, cost-effective method of destroying tumor tissue through an intratumoral injection of high concentrations of cytotoxic alcohol. Ethyl-cellulose ethanol (ECE) ablation, a modified version of ethanol ablation, contains the phase-changing polysaccharide ethyl-cellulose to reduce ethanol leakage away from the tumor. Ablation produces tissue necrosis and initiates a wound healing process; however, the characteristic of the immunologic events after ECE ablation of tumors has yet to be explored.
View Article and Find Full Text PDFInnate pattern recognition receptor agonists, including Toll-like receptors (TLRs), alter the tumor microenvironment and prime adaptive antitumor immunity. However, TLR agonists present toxicities associated with widespread immune activation after systemic administration. To design a TLR-based therapeutic suitable for systemic delivery and capable of safely eliciting tumor-targeted responses, we developed immune-stimulating antibody conjugates (ISACs) comprising a TLR7/8 dual agonist conjugated to tumor-targeting antibodies.
View Article and Find Full Text PDF