There is preliminary evidence that the anticonvulsant medication Zonisamide (ZON) may be an effective, well-tolerated treatment for alcohol use disorder (AUD). However, further evaluation of its efficacy for treating patients with AUD is needed, and much remains unknown about ZON's therapeutic mechanisms. The present study aimed to evaluate the efficacy and tolerability of ZON in a double-blind, placebo-controlled, randomized trial.
View Article and Find Full Text PDFSepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2.
View Article and Find Full Text PDFThe present study expands on the growing body of research on the effects of cognitive behavioral therapy (CBT) on positive affect. More specifically, we explore how CBT may promote increases in the Joviality subscale of the Positive and Negative Affect Schedule-Expanded Form (PANAS-X), a measure of self-rated affect that captures positive emotions, including joy and excitement, and how change in joviality may be associated with concurrent symptom change. We utilized data from a randomized equivalence trial comparing the efficacy of the unified protocol (UP) for transdiagnostic treatment of emotional disorders, a transdiagnostic CBT, against various well-established single disorder protocols (SDP) and waitlist control.
View Article and Find Full Text PDFBrain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer's disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease.
View Article and Find Full Text PDFUrine-derived stem cells (USCs) are adult kidney cells that have been isolated from a urine sample and propagated in tissue culture on gelatin-coated plates. Urine is a practical and completely painless source of cells for gene and cell therapy applications. We have isolated, expanded, and optimized transfection of USCs to develop regenerative therapies based on transposon modification.
View Article and Find Full Text PDFBackground: In diabetic kidney disease, high glucose damages specialized cells called podocytes that filter blood in the glomerulus. In vitro culture of podocytes is crucial for modeling of diabetic nephropathy and genetic podocytopathies and to complement animal studies. Recently, several methods have been published to derive podocytes from human-induced pluripotent stem cells (iPSCs) by directed differentiation.
View Article and Find Full Text PDFJ Am Soc Nephrol
March 2022
AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available.
View Article and Find Full Text PDFSeveral kidney diseases including congenital nephrotic syndrome, Alport syndrome, and diabetic nephropathy are linked to podocyte dysfunction. Human podocytopathies may be modeled in either primary or immortalized podocyte cell lines. Human induced pluripotent stem cell (hiPSC)-derived podocytes are a source of human podocytes, but the existing protocols have variable efficiency and expensive media components.
View Article and Find Full Text PDFThe ICH M7 (R1) guideline recommends the use of complementary (Q)SAR models to assess the mutagenic potential of drug impurities as a state-of-the-art, high-throughput alternative to empirical testing. Additionally, it includes a provision for the application of expert knowledge to increase prediction confidence and resolve conflicting calls. Expert knowledge, which considers structural analogs and mechanisms of activity, has been valuable when models return an indeterminate (equivocal) result or no prediction (out-of-domain).
View Article and Find Full Text PDFTcBuster is a hAT-family DNA transposon from the red flour beetle, Tribolium castaneum. The TcBuster transposase is of interest for genome engineering as it is highly active in insect and mammalian cells. To test the predicted catalytic triad of TcBuster, each residue of the catalytic triad of a haemagglutinin-tagged TcBuster transposase was individually mutated to a structurally conserved amino acid.
View Article and Find Full Text PDFCystinuria Type A is a relatively common genetic kidney disease occurring in 1 in 7,000 people worldwide that results from mutation of the cystine transporter rBAT encoded by Slc3a1. We used CRISPR/Cas9 technology to engineer cystinuria Type A mice via genome editing of the C57BL/6NHsd background. These mice are an improvement on currently available models as they are on a coisogenic genetic background and have a single defined mutation.
View Article and Find Full Text PDFBackground: Cystinuria is an inherited disorder of renal amino acid transport that causes recurrent nephrolithiasis and significant morbidity in humans. It has an incidence of 1 in 7000 worldwide making it one of the most common genetic disorders in man. We phenotypically characterized a mouse model of cystinuria type A resultant from knockout of Slc3a1.
View Article and Find Full Text PDFAll nephrons in the mammalian kidney arise from a transient nephron progenitor population that is lost close to the time of birth. The generation of new nephron progenitors and their maintenance in culture are central to the success of kidney regenerative strategies. Using a lentiviral screening approach, we previously generated a human induced nephron progenitor-like state in vitro using a pool of six transcription factors.
View Article and Find Full Text PDFMagnetic iron oxide nanoparticles (MIONs) have established a niche as a nanomedicine platform for diagnosis and therapy, but they present a challenging surface for ligand functionalization which limits their applications. On the other hand, coating MIONs with another material such as gold to enhance these attachments introduces other complications. Incomplete coating may expose portions of the iron oxide core, or the coating process may alter their magnetic properties.
View Article and Find Full Text PDFA cell therapy platform permitting long-term delivery of peptide hormones in vivo would be a significant advance for patients with hormonal deficiencies. Here we report the utility of antigen-specific T lymphocytes as a regulatable peptide delivery platform for in vivo therapy. piggyBac transposon modification of murine cells with luciferase allows us to visualize T cells after adoptive transfer.
View Article and Find Full Text PDFHydrodynamic injection creates a local, high-pressure environment to transfect various tissues with plasmid DNA and other substances. Hydrodynamic tail vein injection, for example, is a well-established method by which the liver can be transfected. This manuscript describes an application of hydrodynamic principles by injection of the mouse kidney directly with plasmid DNA for kidney-specific gene expression.
View Article and Find Full Text PDFIntegrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X.
View Article and Find Full Text PDFMethods enabling kidney-specific gene transfer in adult mice are needed to develop new therapies for kidney disease. We attempted kidney-specific gene transfer following hydrodynamic tail vein injection using the kidney-specific podocin and gamma-glutamyl transferase promoters, but found expression primarily in the liver. In order to achieve kidney-specific transgene expression, we tested direct hydrodynamic injection of a DNA solution into the renal pelvis and found that luciferase expression was strong in the kidney and absent from extra-renal tissues.
View Article and Find Full Text PDFTransposons are highly abundant in eukaryotic genomes, but their mobilization must be finely tuned to maintain host organism fitness and allow for transposon propagation. Forty percent of the human genome is comprised of transposable element sequences, and the most abundant cut-and-paste transposons are from the hAT superfamily. We found that the hAT transposase TcBuster from Tribolium castaneum formed filamentous structures, or rodlets, in human tissue culture cells, after gene transfer to adult mice, and ex vivo in cell-free conditions, indicating that host co-factors or cellular structures were not required for rodlet formation.
View Article and Find Full Text PDFDNA transposons offer an efficient nonviral method of permanently modifying the genomes of mammalian cells. The piggyBac transposon system has proven effective in genomic engineering of mammalian cells for preclinical applications, including gene discovery, simultaneous multiplexed genome modification, animal transgenesis, gene transfer in vivo achieving long-term gene expression in animals, and the genetic modification of clinically relevant cell types, such as induced pluripotent stem cells and human T lymphocytes. piggyBac has many desirable features, including seamless excision of transposons from the genomic DNA and the potential to target integration events to desired DNA sequences.
View Article and Find Full Text PDFInsulin-like growth factor-1 receptor (IGF-1R) can regulate vascular homeostasis and endothelial function. We studied the role of IGF-1R in oxidative stress-induced endothelial dysfunction. Unilateral ureteral obstruction (UUO) was performed in wild-type (WT) mice and mice with endothelial cell (EC)-specific IGF-1R knockout (KO).
View Article and Find Full Text PDFNon-viral transposons have been used successfully for genetic modification of clinically relevant cells including embryonic stem, induced pluripotent stem, hematopoietic stem and primary human T cell types. However, there has been limited evaluation of undesired genomic effects when using transposons for human genome modification. The prevalence of piggyBac(PB)-like terminal repeat (TR) elements in the human genome raises concerns.
View Article and Find Full Text PDFOver-expression of chemokine receptor 4 (CXCR4) is present in a majority of cancers, has been linked to an aggressive phenotype, and may indicate the metastatic potential of primary tumor. Several CXCR4 targeted therapeutics are in clinical trials and the development of the corresponding imaging agents is an area of active interest. Previously, (64)Cu-labeled imaging agents for CXCR4 have provided clear images of CXCR4-bearing tissues in relevant experimental models but demonstrated fast washout from tissues harboring receptor.
View Article and Find Full Text PDFToxoplasmosis continues to be a public health problem, causing significant morbidity worldwide. Currently available medications, effective for acute toxoplasmosis, are nonetheless problematic due to adverse side effects in many patients. In addition, no medication is able to completely eradicate the parasite cysts, rendering infected individuals at risk for reactivation upon becoming immunocompromised.
View Article and Find Full Text PDFCanonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome 1, EIF4E1B (At1g29550) and EIF4E1C (At1g29590).
View Article and Find Full Text PDF