Publications by authors named "Lauren Tanabe"

Breast cancer progression is accompanied by increased expression of extracellular and cell-surface proteases capable of degrading the extracellular matrix as well as cleaving and activating downstream targets. The type II transmembrane serine proteases (TTSPs) are a family of cell-surface proteases that play critical roles in numerous types of cancers. Therefore, the aim of this study was to identify novel and uncharacterized TTSPs with differential expression in breast cancer and to determine their potential roles in progression.

View Article and Find Full Text PDF

TMPRSS13 is a member of the type II transmembrane serine protease (TTSP) family. Although various TTSPs have been characterized in detail biochemically and functionally, the basic properties of TMPRSS13 remain unclear. Here, we investigate the activation, inhibition, post-translational modification, and localization of TMPRSS13.

View Article and Find Full Text PDF

Pericellular proteases have long been implicated in carcinogenesis. Previous research focused on these proteins, primarily as extracellular matrix (ECM) protein-degrading enzymes which allowed cancer cells to breach the basement membrane and invade surrounding tissue. However, recently, there has been a shift in the view of cell surface proteases, including serine proteases, as proteolytic modifiers of particular targets, including growth factors and protease-activated receptors, which are critical for the activation of oncogenic signaling pathways.

View Article and Find Full Text PDF

DYT1 dystonia is a neurodevelopmental disease that manifests during a discrete period of childhood. The disease is caused by impaired function of torsinA, a protein linked to nuclear membrane budding. The relationship of NE budding to neural development and CNS function is unclear, however, obscuring its potential role in dystonia pathogenesis.

View Article and Find Full Text PDF

The poor prognosis for patients with inflammatory breast cancer (IBC) compared to patients with other types of breast cancers emphasizes the need to better understand the molecular underpinnings of this disease with the goal of developing effective targeted therapeutics. Dysregulation of matriptase expression, an epithelial-specific member of the type II transmembrane serine protease family, has been demonstrated in many different cancer types. To date, no studies have assessed the expression and potential pro-oncogenic role of matriptase in IBC.

View Article and Find Full Text PDF

Matriptase is an epithelia-specific membrane-anchored serine protease that has received considerable attention in recent years because of its consistent dysregulation in human epithelial tumours, including breast cancer. Mice with reduced levels of matriptase display a significant delay in oncogene-induced mammary tumour formation and blunted tumour growth. The abated tumour growth is associated with a decrease in cancer cell proliferation.

View Article and Find Full Text PDF
Article Synopsis
  • - The lack of a proper model for primary dystonia has hindered research into the disease's cellular and molecular causes, largely related to the DYT1 mutation affecting torsinA, a protein involved in cellular functions.
  • - Researchers created mouse models with specific genetic deletions to observe that these mice exhibited abnormal twisting movements and developed neurodegeneration, which varied in severity based on the mutation type.
  • - The study highlights the connection between dysfunctional torsinA and the development of dystonia, showing that these genetic models can help understand the disease's progression and potential neurodegenerative aspects.
View Article and Find Full Text PDF

Over the last two decades, cell surface proteases belonging to the type II transmembrane serine protease (TTSP) family have emerged as important enzymes in the mammalian degradome, playing critical roles in epithelial biology, regulation of metabolic homeostasis, and cancer. Human airway trypsin-like protease 5 (HATL5) is one of the few family members that remains uncharacterized. Here we demonstrate that HATL5 is a catalytically active serine protease that is inhibited by the two Kunitz type serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and 2, as well as by serpinA1.

View Article and Find Full Text PDF

DYT1 dystonia is a debilitating neurological disease characterized by involuntary twisting movements. The disease is caused by an in-frame deletion (GAG, "ΔE") mutation in the TOR1A gene that encodes the torsinA protein. Intriguingly, only 30% of mutation carriers exhibit motor symptoms despite the fact that functional brain imaging studies show abnormal brain metabolism in all carriers.

View Article and Find Full Text PDF

The factors that determine symptom penetrance in inherited disease are poorly understood. Increasingly, magnetic resonance diffusion tensor imaging (DTI) and PET are used to separate alterations in brain structure and function that are linked to disease symptomatology from those linked to gene carrier status. One example is DYT1 dystonia, a dominantly inherited movement disorder characterized by sustained muscle contractions, postures, and/or involuntary movements.

View Article and Find Full Text PDF

Primary dystonia is characterized by abnormal, involuntary twisting and turning movements that reflect impaired motor system function. The dystonic brain seems normal, in that it contains no overt lesions or evidence of neurodegeneration, but functional brain imaging has uncovered abnormalities involving the cortex, striatum and cerebellum, and diffusion tensor imaging suggests the presence of microstructural defects in white matter tracts of the cerebellothalamocortical circuit. Clinical electrophysiological studies show that the dystonic CNS exhibits aberrant plasticity--perhaps related to deficient inhibitory neurotransmission--in a range of brain structures, as well as the spinal cord.

View Article and Find Full Text PDF

Background: Systemic exposure to amphetamine (AMPH) leads to a number of long-lasting neuroadaptations including changes in dendritic morphology in rat forebrain. It remains unknown whether these changes relate to associative drug conditioning or to nonassociative drug sensitization, two forms of plasticity produced by systemic exposure to AMPH.

Methods: We compared the behavioral, neuronal, and morphologic consequences of exposing rats to intraperitoneal (IP) AMPH to those of exposure to AMPH applied to the ventral tegmental area (VTA), infusions that sensitize AMPH-induced locomotion and nucleus accumbens (NAcc) DA overflow but do not produce drug conditioning.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation.

View Article and Find Full Text PDF

Repeated exposure to amphetamine (AMPH) leads to the development of behavioural sensitization that can be demonstrated in rats as enhanced locomotor responding to and self-administration of the drug. Glutamate systems are known to participate in the induction and expression of sensitization by psychostimulants. Group II metabotropic glutamate receptors (mGluRs), because they negatively regulate both vesicular and nonvesicular glutamate release, are thus well positioned to gate its expression.

View Article and Find Full Text PDF

The effect of previous exposure to psychostimulants on the subsequent self-administration of cocaine as well as reinstatement of this behavior by priming infusions of AMPA into the nucleus accumbens (NAcc) was examined. Rats were exposed to five injections, one injection every third day, of either saline or amphetamine (AMPH: 1.5 mg/kg, i.

View Article and Find Full Text PDF

Previous exposure to amphetamine (AMPH) in the ventral tegmental area (VTA) enhances cocaine self-administration in a D(1) dopamine receptor-dependent manner. The present study examined the contribution of VTA NMDA, AMPA/kainate, and metabotropic glutamate (mGlu) receptors to this effect. Rats in different groups received three intra-VTA injections, one every third day, of either saline (0.

View Article and Find Full Text PDF