Publications by authors named "Lauren T Fleming"

Particulate nitrate ([Formula: see text]) has long been considered a permanent sink for NO (NO and NO), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NO back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in "renoxification" photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text], thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies.

View Article and Find Full Text PDF

A large concern with estimates of climate and health co-benefits of "clean" cookstoves from controlled emissions testing is whether results represent what actually happens in real homes during normal use. A growing body of evidence indicates that in-field emissions during daily cooking activities differ substantially from values obtained in laboratories, with correspondingly different estimates of co-benefits. We report PM emission factors from uncontrolled cooking ( = 7) and minimally controlled cooking tests ( = 51) using traditional chulha and angithi stoves in village kitchens in Haryana, India.

View Article and Find Full Text PDF

Light-absorbing components of atmospheric organic aerosols, which are collectively termed "brown carbon" (BrC), are ubiquitous in the atmosphere. They affect absorption of solar radiation by aerosols in the atmosphere and human health as some of them have been identified as potential toxins. Understanding the sources, formation, atmospheric evolution, and environmental effects of BrC requires molecular identification and characterization of light-absorption properties of BrC chromophores.

View Article and Find Full Text PDF