HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway.
View Article and Find Full Text PDFHuman apurinic/apyrimidinic endonuclease (Ape1) plays an important role by processing the >10,000 highly toxic abasic sites generated in the genome of each cell every day. Ape1 has recently emerged as a target for inhibition, in that its overexpression in tumors has been linked with poor response to both radiation and chemotherapy and lower overall patient survival. Inhibition of Ape1 using siRNA or the expression of a dominant-negative form of the protein has been shown to sensitize cells to DNA-damaging agents, including various chemotherapeutic agents.
View Article and Find Full Text PDFNucleic Acids Res
December 2006
Human nuclear uracil DNA glycosylase (UNG2) is a cellular DNA repair enzyme that is essential for a number of diverse biological phenomena ranging from antibody diversification to B-cell lymphomas and type-1 human immunodeficiency virus infectivity. During each of these processes, UNG2 recognizes uracilated DNA and excises the uracil base by flipping it into the enzyme active site. We have taken advantage of the extrahelical uracil recognition mechanism to build large small-molecule libraries in which uracil is tethered via flexible alkane linkers to a collection of secondary binding elements.
View Article and Find Full Text PDFNucleic Acids Res
January 2006
5-fluorouracil (5-FU) is a widely used anticancer drug that disrupts pyrimidine nucleotide pool balances and leads to uracil incorporation in DNA, which is then recognized and removed by the uracil base excision repair (BER) pathway. Using complementary biochemical and genetic approaches we have examined the role of uracil BER in the cell killing mechanism of 5-FU. A yeast strain lacking the enzyme uracil DNA glycosylase (Ung1), which excises uracil from the DNA backbone leaving an abasic site, showed significant protection against the toxic effects of 5-FU, a G1/S cell cycle arrest phenotype, and accumulated massive amounts of U/A base pairs in its genome (approximately 4% of T/A pairs were now U/A).
View Article and Find Full Text PDFUracil DNA glycosylase (UNG) is an important DNA repair enzyme that recognizes and excises uracil bases in DNA using an extrahelical recognition mechanism. It is emerging as a desirable target for small-molecule inhibitors given its key role in a wide range of biological processes including the generation of antibody diversity, DNA replication in a number of viruses, and the formation of DNA strand breaks during anticancer drug therapy. To accelerate the discovery of inhibitors of UNG we have developed a uracil-directed ligand tethering strategy.
View Article and Find Full Text PDFThe DNA repair enzyme uracil DNA glycosylase has been crystallized with a cationic 1-aza-2'-deoxyribose-containing DNA that mimics the ultimate transition state of the reaction in which the water nucleophile attacks the anomeric center of the oxacarbenium ion-uracil anion reaction intermediate. Comparison with substrate and product structures, and the previous structure of the intermediate determined by kinetic isotope effects, reveals an exquisite example of geometric strain, least atomic motion, and electrophile migration in biological catalysis. This structure provides a rare opportunity to reconstruct the detailed structural transformations that occur along an enzymatic reaction coordinate.
View Article and Find Full Text PDF