Lysosomal network abnormalities are an increasingly recognised feature of Alzheimer's disease (AD), which appear early and are progressive in nature. Sandhoff disease and Tay-Sachs disease (neurological lysosomal storage diseases caused by mutations in genes that code for critical subunits of β-hexosaminidase) result in accumulation of amyloid-β (Aβ) and related proteolytic fragments in the brain. However, experiments that determine whether mutations in genes that code for β-hexosaminidase are risk factors for AD are currently lacking.
View Article and Find Full Text PDFLysosomal network dysfunction is a prominent feature of Alzheimer's disease (AD). Although transgenic mouse models of AD are known to model some aspects of lysosomal network dysfunction, the lysosomal network has not yet been examined in the knock-in App mouse. We aimed to determine whether App mice exhibit disruptions to the lysosomal network in the brain.
View Article and Find Full Text PDFThe recent development of knock-in mouse models of Alzheimer's disease provides distinct advantages over traditional transgenic mouse models that rely on over-expression of amyloid precursor protein. Two such knock-in models that have recently been widely adopted by Alzheimer's researchers are the App and App mice. This study aimed to further characterise the behavioural phenotype and amyloid plaque distribution of App (C57BL/6J background) mice at six-months of age.
View Article and Find Full Text PDFMucopolysaccharidosis (MPS) type IIIA, or Sanfilippo syndrome, is a neurodegenerative lysosomal storage disorder caused by a deficiency of the lysosomal enzyme N-sulfoglucosamine sulfohydrolase (SGSH), involved in the catabolism of heparan sulfate. The clinical spectrum is broad and the age of symptom onset and the degree of preservation of cognitive and motor functions appears greatly influenced by genotype. To explore this further, we generated a conditional knockout (Sgsh ) mouse model with ubiquitous Sgsh deletion, and compared the clinical and pathological phenotype with that of the spontaneous Sgsh MPS-IIIA mouse model.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common cause of dementia, and its prevalence will increase significantly in the coming decades. Although important progress has been made, fundamental pathogenic mechanisms as well as most hereditary contributions to the sporadic form of the disease remain unknown. In this review, we examine the now substantial links between AD pathogenesis and lysosomal biology.
View Article and Find Full Text PDFThe orphan G protein-coupled receptor GPR55 has been proposed as a novel receptor of the endocannabinoid system. However, the validity of this categorization is still under debate mainly because of the lack of potent and selective agonists and antagonists of GPR55. Binding assays are not yet available for GPR55 screening, and discrepancies in GPR55 mediated signaling pathways have been reported.
View Article and Find Full Text PDFDeficient -sulfoglucosamine sulfohydrolase (SGSH) enzyme activity causes mucopolysaccharidosis (MPS) type IIIA. A fluorimetric SGSH activity assay is commonly used to examine patient cells. Here, we modified this method for brain homogenates and define the parameters for assay linearity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2009
GPR55 is a G protein-coupled receptor recently shown to be activated by certain cannabinoids and by lysophosphatidylinositol (LPI). However, the physiological role of GPR55 remains unknown. Given the recent finding that the cannabinoid receptors CB(1) and CB(2) affect bone metabolism, we examined the role of GPR55 in bone biology.
View Article and Find Full Text PDF