Publications by authors named "Lauren S Vaughn"

Depletion or inhibition of core stress granule proteins, G3BP1 in mammals and TIAR-2 in , increases the growth of spontaneously regenerating axons. Inhibition of G3BP1 by expression of its acidic or "B-domain" accelerates axon regeneration after nerve injury, bringing a potential therapeutic strategy for peripheral nerve repair. Here, we asked whether G3BP1 inhibition is a viable strategy to promote regeneration in injured mammalian central nervous system (CNS) where axons do not regenerate spontaneously.

View Article and Find Full Text PDF

The small GTPase CDC42 promotes axon growth through actin filament polymerization and this growth is driven by axonal localization of the mRNA encoding the prenylated CDC42 isoform (). Here, we show that axonal mRNA transport and translation are decreased by growth-inhibiting stimulation and increased by growth-promoting stimulation. In contrast, axonal mRNA transport and translation are increased by growth inhibition but unaffected by growth promotion.

View Article and Find Full Text PDF

Unlabelled: Depletion or inhibition of core stress granule proteins, G3BP1 in mammals and TIAR-2 in , increases axon regeneration in injured neurons, showing spontaneous regeneration. Inhibition of G3BP1 by expression of its acidic or 'B-domain' accelerates axon regeneration after nerve injury, bringing a potential therapeutic intervention to promote neural repair in the peripheral nervous system. Here, we asked if G3BP1 inhibition is a viable strategy to promote regeneration in injured mammalian central nervous system where axons do not regenerate spontaneously.

View Article and Find Full Text PDF

The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo.

View Article and Find Full Text PDF

DYT- (dystonia 16 or DYT-) is caused by mutations in the gene that encodes PACT, the protein activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR). PACT participates in several cellular pathways, of which its role as a PKR activator protein during integrated stress response (ISR) is the best characterized. Previously, we have established that the DYT- mutations cause enhanced activation of PKR during ISR to sensitize DYT- cells to apoptosis.

View Article and Find Full Text PDF

Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons.

View Article and Find Full Text PDF

An integral aspect of innate immunity is the ability to detect foreign molecules of viral origin to initiate antiviral signaling via pattern recognition receptors (PRRs). One such receptor is the RNA helicase retinoic acid inducible gene 1 (RIG-I), which detects and is activated by 5'triphosphate uncapped double stranded RNA (dsRNA) as well as the cytoplasmic viral mimic dsRNA polyI:C. Once activated, RIG-I's CARD domains oligomerize and initiate downstream signaling via mitochondrial antiviral signaling protein (MAVS), ultimately inducing interferon (IFN) production.

View Article and Find Full Text PDF

Dystonia 16 (DYT16) is caused by mutations in PACT, the protein activator of interferon-induced double-stranded RNA-activated protein kinase (PKR). PKR regulates the integrated stress response (ISR) via phosphorylation of the translation initiation factor eIF2α. This post-translational modification attenuates general protein synthesis while concomitantly triggering enhanced translation of a few specific transcripts leading either to recovery and homeostasis or cellular apoptosis depending on the intensity and duration of stress signals.

View Article and Find Full Text PDF

Ras Guanine Exchange Factor (RasGEF) domain family member 1b is encoded by a Toll-like receptor (TLR)-inducible gene expressed in macrophages, but transcriptional mechanisms that govern its expression are still unknown. Here, we have functionally characterized the 5' flanking Rasgef1b sequence and analyzed its transcriptional activation. We have identified that the inflammation-responsive promoter is contained within a short sequence (-183 to +119) surrounding the transcriptional start site.

View Article and Find Full Text PDF

Protein Activator (PACT) activates the interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) in response to stress signals. Oxidative stress and endoplasmic reticulum (ER) stress causes PACT-mediated PKR activation, which leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. A dominantly inherited form of early-onset dystonia 16 (DYT16) has been identified to arise due to a frameshift (FS) mutation in PACT.

View Article and Find Full Text PDF
Article Synopsis
  • PACT is critical for activating PKR, which, when triggered by stress, inhibits protein synthesis and can lead to cell death.
  • A mutation in PACT (P222L), linked to early-onset dystonia (DYT16), alters its interaction with PKR, leading to stronger and prolonged PKR activation.
  • The P222L mutation also modifies how PACT interacts with other proteins, resulting in intensified cell death under stress conditions.
View Article and Find Full Text PDF

Endoplasmic reticulum (ER) dysfunction is thought to play a significant role in several neurological disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, cerebral ischemia, and the prion diseases. ER dysfunction can be mimicked by cellular stress signals such as disruption of calcium homeostasis, inhibition of protein glycosylation, and reduction of disulfide bonds, which results in accumulation of misfolded proteins in the ER and leads to cell death by apoptosis. Tunicamycin, which is an inhibitor of protein glycosylation, induces ER stress and apoptosis.

View Article and Find Full Text PDF