Publications by authors named "Lauren S Lastra"

Nanopores are a promising single-molecule sensing device class that captures molecular-level information through resistive or conductive pulse sensing (RPS and CPS). The latter has not been routinely utilized in the nanopore field despite the benefits it could provide, specifically in detecting subpopulations of a molecule. A systematic study was conducted here to study the CPS-based molecular discrimination and its voltage-dependent characteristics.

View Article and Find Full Text PDF

Nanopore sensing is nearly synonymous with resistive pulse sensing due to the characteristic occlusion of ions during pore occupancy, particularly at high salt concentrations. Contrarily, conductive pulses are observed under low salt conditions wherein electroosmotic flow is significant. Most literature reports counterions as the dominant mechanism of conductive events (a molecule-centric theory).

View Article and Find Full Text PDF

Nanopores are ideally suited for the analysis of long DNA fragments including chromosomal DNA and synthetic DNA with applications in genome sequencing and DNA data storage, respectively. Hydrodynamic fluid flow has been shown to slow down DNA transit time within the pore, however other influences of hydrodynamic forces have yet to be explored. In this report, a broad analysis of pressure-biased nanopores and the impact of hydrodynamics on DNA transit time, capture rate, current blockade depth, and DNA folding are conducted.

View Article and Find Full Text PDF

Modern diagnostics strive to be accurate, fast, and inexpensive in addition to properly identifying the presence of a disease, infection, or illness. Early diagnosis is key; catching a disease in its early stages can be the difference between fatality and treatment. The challenge with many diseases is that detectability of the disease scales with disease progression.

View Article and Find Full Text PDF

Nanopore sensing is a promising tool with widespread application in single-molecule detection. Borosilicate glass nanopores are a viable alternative to other solid-state nanopores due to low noise and cost-efficient fabrication. For dielectric materials, including borosilicate glass, the capacitive noise is one of the major contributors to noise, which depends on the wall thickness and the surface area submerged in an ionic solution.

View Article and Find Full Text PDF