Background: Surgical resection is integral for the treatment of neuroblastoma, the most common extracranial solid malignancy in children. Safely locating and resecting primary tumor and remote deposits of disease remains a significant challenge, resulting in high rates of complications and incomplete surgery, worsening outcomes. Intraoperative molecular imaging (IMI) uses targeted radioactive or fluorescent tracers to identify and visualize tumors intraoperatively.
View Article and Find Full Text PDFSignificance: Intraoperative molecular imaging (IMI) enables the detection and visualization of cancer tissue using targeted radioactive or fluorescent tracers. While IMI research has rapidly expanded, including the recent Food and Drug Administration approval of a targeted fluorophore, the limits of detection have not been well-defined.
Aim: The ability of widely available handheld intraoperative tools (Neoprobe and SPY-PHI) to measure gamma decay and fluorescence intensity from IMI tracers was assessed while varying characteristics of both the signal source and the intervening tissue or gelatin phantoms.
Neuroblastoma accounts for 15% of pediatric cancer deaths, despite multimodal therapy including surgical resection. Current neuroblastoma rodent models are insufficient for studying the impact of surgery and combination treatments, largely due to the small size of mouse models. Human neuroblastoma SK-N-BE(2) cells were injected into the left adrenal gland of 5-6-week-old RNU homozygous nude rats.
View Article and Find Full Text PDFBackground: The radiographic finding of pneumatosis intestinalis can indicate a spectrum of underlying processes ranging from a benign finding to a life-threatening condition. Although radiographic pneumatosis intestinalis is relatively common, there is no validated clinical tool to guide surgical management.
Methods: Using a retrospective cohort of 300 pneumatosis intestinalis cases from a single institution, we developed 3 machine learning models for 2 clinical tasks: (1) the distinction of benign from pathologic pneumatosis intestinalis cases and (2) the determination of patients who would benefit from an operation.
Objective: The purposes of this study were to assess correlation of apparent diffusion coefficient (ADC) and normalized ADC (ratio of tumor to nontumor tissue) with the Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) and updated International Society of Urological Pathology (ISUP) categories and to determine how to optimally use ADC metrics for objective assistance in categorizing lesions within PI-RADSv2 guidelines.
Materials And Methods: In this retrospective study, 100 patients (median age, 62 years; range, 44-75 years; prostate-specific antigen level, 7.18 ng/mL; range, 1.
Amyotrophic lateral sclerosis (ALS) is a rapid and fatal neurodegenerative disease, primarily affecting upper and lower motor neurons. It is an extremely heterogeneous disease in both cause and symptom development, and its mechanisms of pathogenesis remain largely unknown. Excitotoxicity, a process caused by excessive glutamate signaling, is believed to play a substantial role, however.
View Article and Find Full Text PDFDownregulation in the astroglial glutamate transporter EAAT2 in amyotrophic lateral sclerosis (ALS) patients and mutant SOD1 mouse models of ALS is believed to contribute to the death of motor neurons by excitotoxicity. We previously reported that caspase-3 cleaves EAAT2 at a unique cleavage consensus site located in its c-terminus domain, a proteolytic cleavage that also occurs in vivo in the mutant SOD1 mouse model of ALS and leads to accumulation of a sumoylated EAAT2 C-terminus fragment (CTE-SUMO1) beginning around onset of disease. CTE-SUMO1 accumulates in PML nuclear bodies of astrocytes and causes them to alter their mature phenotypes and secrete factors toxic to motor neurons.
View Article and Find Full Text PDFContext: Cadmium oxide nanoparticles (CdO NPs) are employed in optoelectronic devices and as a starting material for generating quantum dots as well as for medical imaging and targeting of pharmaceutical agents to disease sites. However, there are lack of data concerning short- and long-term effects of CdO NPs on the lungs.
Objective: To determine the effects of inhaled CdO NPs at an occupationally relevant concentration on pulmonary injury and repair, and on systemic immunity in adult male mice.
Emerging lines of evidence suggest a relationship between amyotrophic lateral sclerosis (ALS) and protein sumoylation. Multiple studies have demonstrated that several of the proteins involved in the pathogenesis of ALS, including superoxide dismutase 1, fused in liposarcoma, and TAR DNA-binding protein 43 (TDP-43), are substrates for sumoylation. Additionally, recent studies in cellular and animal models of ALS revealed that sumoylation of these proteins impact their localization, longevity, and how they functionally perform in disease, providing novel areas for mechanistic investigations and therapeutics.
View Article and Find Full Text PDFUnlabelled: The overexpression and overactivation of hepatocyte growth factor receptor (Met) in various cancers has been linked to increased proliferation, progression to metastatic disease, and drug resistance. Developing a PET agent to assess Met expression would aid in the diagnosis and monitoring of responses to Met-targeted therapies. In these studies, onartuzumab, the experimental therapeutic 1-armed monoclonal antibody, was radiolabeled with (76)Br or (89)Zr and evaluated as an imaging agent in Met-expressing cell lines and mouse xenografts.
View Article and Find Full Text PDFThree major modes of cancer therapy (surgery, radiation and chemotherapy) are the mainstay of modern oncologic therapy. To minimize the side effects of these therapies, molecular-targeted cancer therapies, including armed antibody therapy, have been developed with limited success. In this study, we have developed a new type of molecular-targeted cancer therapy, photoimmunotherapy (PIT), that uses a target-specific photosensitizer based on a near-infrared (NIR) phthalocyanine dye, IR700, conjugated to monoclonal antibodies (mAbs) targeting epidermal growth factor receptors.
View Article and Find Full Text PDFThe high target specificity of antibodies and related constructs makes them excellent scaffolds for molecular-imaging probes. Quantitative data on biodistribution and pharmacokinetics can be acquired by radiolabeling these agents. Such studies demonstrate prolonged circulation times and resulting nonspecific accumulation with high background signal using antibody-based agents.
View Article and Find Full Text PDFContrast Media Mol Imaging
November 2011
Quantum dots (QDs) are fluorescent nanoparticles with broad excitation and narrow, wavelength-tunable emission spectra. They are used extensively for in vitro fluorescence imaging studies and more recently for in vivo small animal and pre-clinical studies. To date there has been little concern about the selection of QD size (and thus emission wavelength peak) and excitation wavelengths, as they have little relevance to the results of in vitro studies.
View Article and Find Full Text PDFNanoparticles present a new collection of contrast agents for the field of in vivo molecular imaging. This review focuses on promising molecular imaging probes for optical and magnetic resonance imaging based on four representative nanomaterial(s) platforms: quantum dots, upconversion phosphors, superparamagnetic iron oxides, and dendrimer-based agents. Quantum dots are extremely efficient fluorescent nanoparticles with size-tunable emission properties, enabling high sensitivity and greater depth penetration.
View Article and Find Full Text PDFOsteopenia is a complication of anorexia nervosa (AN) associated with a two- to three-fold increase in fractures. Nutritional deficits and hormonal abnormalities are thought to mediate AN-induced bone loss. Alterations in bone microarchitecture may explain fracture risk independent of bone mineral density (BMD).
View Article and Find Full Text PDF5-(Ethylamino)-9-diethylaminobenzo[a]phenothiazinium chloride (EtNBS) is a photosensitizer (PS) with broad antimicrobial photodynamic activity. The objective of this study was to determine the antimicrobial photodynamic effect of side chain/end group modifications of EtNBS on two representative bacterial Gram-type-specific strains. Two EtNBS derivatives were synthesized, each functionalized with a different side-chain end-group, alcohol or carboxylic acid.
View Article and Find Full Text PDF