The influence of breast cancer cells on normal cells of the microenvironment, such as fibroblasts and macrophages, has been heavily studied but the influence of normal epithelial cells on breast cancer cells has not. Here using and models we demonstrate the impact epithelial cells and the mammary microenvironment can exert on breast cancer cells. Under specific conditions, signals that originate in epithelial cells can induce phenotypic and genotypic changes in cancer cells.
View Article and Find Full Text PDFOne major foundation of cancer etiology is the process of clonal expansion. The mechanisms underlying the complex process of a single cell leading to a clonal dominant tumor, are poorly understood. Our study aims to analyze mitochondrial DNA (mtDNA) for somatic single nucleotide polymorphisms (SNPs) variants, to determine if they are conserved throughout clonal expansion in mammary tissues and tumors.
View Article and Find Full Text PDFLong-label retention has been used by many to prove Cairns' immortal strand hypothesis and to identify potential stem cells. Here, we describe two strategies using 5-ethynl-2'-deoxyuridine (EdU) to identify and understand the distribution of long-label-retaining mammary epithelial cells during formation of the mouse mammary ductal system. First, EdU was given upon two consecutive days per week during weeks 4 through 10 and analyzed for label retention at 13 weeks of age.
View Article and Find Full Text PDFAutotaxin (ATX) is a ubiquitous ectoenzyme that hydrolyzes lysophosphatidylcholine (LPC) to form the bioactive lipid mediator lysophosphatidic acid (LPA). LPA activates specific G-protein coupled receptors to elicit downstream effects leading to cellular motility, survival, and invasion. Through these pathways, upregulation of ATX is linked to diseases such as cancer and cardiovascular disease.
View Article and Find Full Text PDF