Publications by authors named "Lauren N St John"

Tumor cells in the bone interact with the microenvironment to promote tumor cell survival and proliferation, resulting in a lethal phenotype for patients with advanced prostate cancer. Monocyte chemoattractant protein 1 (CCL2) is a member of the CC chemokine family and is known to promote monocyte chemotaxis to sites of inflammation. Here we have shown that human bone marrow endothelial (HBME) cells secrete significantly higher levels of CCL2 compared to human aortic endothelial cells and human dermal microvascular endothelial cells.

View Article and Find Full Text PDF

Prostate epithelial cell growth is dependent on the presence of androgens, and transition of prostate cancer to an androgen-independent phenotype results in a highly aggressive, currently incurable cancer. We have developed a new preclinical model of androgen-independent prostate cancer derived from the VCaP prostate cancer epithelial cell line. VCaP cells were subcutaneously implanted and serially passaged in castrated male severe combined immunodeficient mice.

View Article and Find Full Text PDF

We previously identified MIM-A (missing in metastasis, MTSS1) by differential display techniques as missing in invasive, metastatic bladder cancer cell lines and suggested that MIM-A is a novel putative metastasis suppressor gene. Characterization of the MIM gene revealed a WH2 (Wiskott-Aldrich syndrome protein homology 2) domain in the C-terminus that is known to bind actin monomers and regulate organization of the actin cytoskeleton. Here, we further describe two alternatively splice variants of MIM-A, called MIM(12del) and MIM-B, which share > 50% amino acid sequence homology with MIM-A in the C-terminal domain.

View Article and Find Full Text PDF