Comp Biochem Physiol A Mol Integr Physiol
March 2020
Cystic Fibrosis Transmembrane conductance Regulator (CFTR) anion channels are the regulated exit pathway in Cl secretion by teleost salt secreting ionocytes of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase Focal Adhesion Kinase (FAK) phosphorylated at Y407 (FAKpY407) and FAKpY397 are colocalized at the apical membrane and in subjacent membrane vesicles of ionocytes. Hypotonic shock and the α-2 adrenergic agonist clonidine rapidly and reversibly inhibit Cl secretion by isolated opercular epithelia, simultaneous with dephosphorylation of FAKpY407 and increased FAKpY397, located in the apical membrane of ionocytes in the opercular epithelium.
View Article and Find Full Text PDFIn vertebrate salt-secreting epithelia, Na(+) moves passively down an electrochemical gradient via a paracellular pathway. We assessed how this pathway is modified to allow Na(+) secretion in hypersaline environments. Mummichogs (Fundulus heteroclitus) acclimated to hypersaline [2× seawater (2SW), 64‰] for 30 days developed invasive projections of accessory cells with an increased area of tight junctions, detected by punctate distribution of CFTR (cystic fibrosis transmembrane conductance regulator) immunofluorescence and transmission electron miscroscopy of the opercular epithelia, which form a gill-like tissue rich in ionocytes.
View Article and Find Full Text PDF