Publications by authors named "Lauren Mullineaux"

The discovery of inactive hydrothermal vent sulfide features near 9°50'N on the East Pacific Rise provides an opportunity to investigate the distribution and feeding ecology of communities inhabiting this type of habitat. We quantify megafaunal distributions on two features, Lucky's Mound and Sentry Spire, to determine how taxonomic composition and feeding traits vary with vertical elevation. Fifty-one morphotypes, categorized by feeding mode, were identified from three levels of the features (spire, apron, and base) and the surrounding flat oceanic rise.

View Article and Find Full Text PDF

Habitat isolation and disturbance are important regulators of biodiversity, yet it remains unclear how these environmental features drive differences in parasite diversity between ecosystems. We test whether the biological communities in an isolated, frequently disturbed marine ecosystem (deep-sea hydrothermal vents) have reduced parasite richness and relatively fewer parasite species with indirect life cycles (ILCs) compared to ecosystems that are less isolated and less disturbed. We surveyed the parasite fauna of the biological community at the 9°50'N hydrothermal vent field on the East Pacific Rise and compared it to similar datasets from a well-connected and moderately disturbed ecosystem (kelp forest) and an isolated and undisturbed ecosystem (atoll sandflat).

View Article and Find Full Text PDF

Swimming organisms may actively adjust their behavior in response to the flow around them. Ocean flows are typically turbulent and are therefore characterized by chaotic velocity fluctuations. While some studies have observed planktonic larvae altering their behavior in response to turbulence, it is not always clear whether a plankter is responding to an individual turbulence fluctuation or to the time-averaged flow.

View Article and Find Full Text PDF

AbstractMicrobial symbionts are a common life-history character of marine invertebrates and their developmental stages. Communities of bacteria that associate with the eggs, embryos, and larvae of coastal marine invertebrates tend to be species specific and correlate with aspects of host biology and ecology. The richness of bacteria associated with the developmental stages of coastal marine invertebrates spans four orders of magnitude, from single mutualists to thousands of unique taxa.

View Article and Find Full Text PDF

Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep-sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9°50' N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems.

View Article and Find Full Text PDF

The swimming behavior of invertebrate larvae can affect their dispersal, survival and settlement in the ocean. Modeling this behavior accurately poses unique challenges as behavior is controlled by both physiology and environmental cues. Some larvae use cilia to both swim and create feeding currents, resulting in potential trade-offs between the two functions.

View Article and Find Full Text PDF

Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae-flow interactions have focused on competent larvae near settlement.

View Article and Find Full Text PDF

Ocean acidification, characterized by elevated pCO₂ and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO₂ exposure (resulting in pH = 7.

View Article and Find Full Text PDF

Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9°50'N on the East Pacific Rise following a catastrophic eruption in order to address questions of the relative contributions of pioneer colonists and environmental change to variation in species composition, and the role of pioneers at the disturbed site in altering community structure elsewhere in the region.

View Article and Find Full Text PDF

Atmospheric forcing, which is known to have a strong influence on surface ocean dynamics and production, is typically not considered in studies of the deep sea. Our observations and models demonstrate an unexpected influence of surface-generated mesoscale eddies in the transport of hydrothermal vent efflux and of vent larvae away from the northern East Pacific Rise. Transport by these deep-reaching eddies provides a mechanism for spreading the hydrothermal chemical and heat flux into the deep-ocean interior and for dispersing propagules hundreds of kilometers between isolated and ephemeral communities.

View Article and Find Full Text PDF

The planktonic larval stage is a critical component of life history in marine benthic species because it confers the ability to disperse, potentially connecting remote populations and leading to colonization of new sites. Larval-mediated connectivity is particularly intriguing in deep-sea hydrothermal vent communities, where the habitat is patchy, transient, and often separated by tens or hundreds of kilometers. A recent catastrophic eruption at vents near 9 degrees 50'N on the East Pacific Rise created a natural clearance experiment and provided an opportunity to study larval supply in the absence of local source populations.

View Article and Find Full Text PDF

Dramatic perturbations of ecological communities through rapid shifts in environmental regime do not always result in complete mortality of residents. Instead, legacy individuals may remain and influence the succession and composition of subsequent communities. We used a reciprocal transplant experiment to investigate whether a legacy effect is detectable in communities experiencing an abrupt increase or decrease in hydrothermal fluid flux at deep-sea vents.

View Article and Find Full Text PDF

Previous genetic studies suggest Cape Cod, MA, as a phylogenetic break for benthic marine invertebrates; however, diffuse sampling in this area has hindered fine-scale determination of the break's location and underlying causes. Furthermore, some species exhibit breaks in different places, and others exhibit no breaks in this region. We analyze the phylogeographic patterns of 2 mitochondrial genes from 10 populations of the bamboo worm Clymenella torquata (Annelida: Maldanidae) focused around Cape Cod but extending from the Bay of Fundy, Canada, to New Jersey.

View Article and Find Full Text PDF

At deep-sea hydrothermal vents on the East Pacific Rise (9 degrees 50'N), distinct megafaunal assemblages are positioned along strong thermal and chemical gradients. We investigated the distribution of gastropod species to determine whether they associate with specific megafaunal zones and to determine the thermal boundaries of their habitats. Gastropods colonized a series of basalt blocks that were placed into three different zones characterized by vestimentiferan tubeworms, bivalves, and suspension-feeders, respectively.

View Article and Find Full Text PDF

Group II introns are catalytic RNAs and mobile retrotransposable elements known to be present in the genomes of some nonmarine bacteria and eukaryotic organelles. Here we report the discovery of group II introns in a bacterial mat sample collected from a deep-sea hydrothermal vent near 9 degrees N on the East Pacific Rise. One of the introns was shown to self-splice in vitro.

View Article and Find Full Text PDF