Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation to materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids.
View Article and Find Full Text PDFBiological systems have the unique ability to self-organize and generate autonomous motion and work. Motivated by this, we investigate a 2D model colloidal network that can repeatedly transition between disordered states of low connectivity and ordered states of high connectivity rhythmic binding and unbinding of biomimetic crosslinkers. We use Langevin dynamics to investigate the time-dependent changes in structure and collective properties of this system as a function of colloidal packing fractions and crosslinker oscillation periods and characterize the degree of order in the system by using network connectivity, bond length distributions, and collective motion.
View Article and Find Full Text PDFControlling mechanical properties of polymeric biomaterials, including the elastic modulus, is critical to direct cell behavior, such as proliferation and differentiation. Dityrosine photocrosslinking is an attractive and simple method to prepare materials that exhibit a wide range of elastic moduli by rapidly crosslinking tyrosyl-containing polymers. However, high concentrations of commonly used oxidative crosslinking reagents, such as ruthenium-based photoinitiators and persulfates, present cytotoxicity concerns.
View Article and Find Full Text PDF