Publications by authors named "Lauren M Simkins"

Projections of ice sheet behavior hinge on how ice flow velocity evolves and the extent to which marine-based grounding lines are stable. Ice flow and grounding line retreat are variably governed by the coupling between the ice and underlying terrain. We ask to what degree catchment-scale bed characteristics determine ice flow and retreat, drawing on paleo-ice sheet landform imprints from 99 sites on continental shelves worldwide.

View Article and Find Full Text PDF

How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet's stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet.

View Article and Find Full Text PDF

The stability of modern ice shelves is threatened by atmospheric and oceanic warming. The geologic record of formerly glaciated continental shelves provides a window into the past of how ice shelves responded to a warming climate. Fields of deep (-560 m), linear iceberg furrows on the outer, western Ross Sea continental shelf record an early post-Last Glacial Maximum episode of ice-shelf collapse that was followed by continuous retreat of the grounding line for ∼200 km.

View Article and Find Full Text PDF