The growing socioeconomic burden of musculoskeletal injuries and limitations of current therapies have motivated tissue engineering approaches to generate functional tissues to aid in defect healing. A readily implantable scaffold-free system comprised of human bone marrow-derived mesenchymal stem cells embedded with bioactive microparticles capable of controlled delivery of transforming growth factor-beta 1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) was engineered to guide endochondral bone formation. The microparticles were formulated to release TGF-β1 early to induce cartilage formation and BMP-2 in a more sustained manner to promote remodeling into bone.
View Article and Find Full Text PDFBone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates.
View Article and Find Full Text PDFGiving rise to both bone and cartilage during development, bone marrow-derived mesenchymal stem cells (hMSC) have the unique capacity to generate the complex tissues of the osteochondral interface. Utilizing a scaffold-free hMSC system, biphasic osteochondral constructs are incorporated with two types of growth factor-releasing microparticles to enable spatially organized differentiation. Gelatin microspheres (GM) releasing transforming growth factor-β1 (TGF-β1) combined with hMSC form the chondrogenic phase.
View Article and Find Full Text PDFWith more than half of the world population infected, Helicobacter infection is an important public health issue associated with gastrointestinal cancers and inflammatory bowel disease. Animal studies indicate that complement and oxidative stress play a role in Helicobacter infections. Hemorrhage (HS) induces tissue damage that is attenuated by blockade of either complement activation or oxidative stress products.
View Article and Find Full Text PDFBackground: Complement has been implicated in the pathogenesis of intestinal damage and inflammation in multiple animal models. Although the exact mechanism is unknown, inhibition of complement prevents hemodynamic alterations in hemorrhage.
Materials And Methods: C57Bl/6, complement 5 deficient (C5-/-) and sufficient (C5+/+) mice were subjected to 25% blood loss.