Background: The oral microbiome comprises distinct microbial communities that colonize diverse ecological niches across the oral cavity, the composition of which are influenced by nutrient and substrate availability, host genetics, diet, behavior, age, and other diverse host and environmental factors. Unlike other densely populated human-associated microbial ecosystems (e.g.
View Article and Find Full Text PDFUnlabelled: Arginine catabolism by the bacterial arginine deiminase system (ADS) has anticariogenic properties through the production of ammonia, which modulates the pH of the oral environment. Given the potential protective capacity of the ADS pathway, the exploitation of ADS-competent oral microbes through pre- or probiotic applications is a promising therapeutic target to prevent tooth decay. To date, most investigations of the ADS in the oral cavity and its relation to caries have focused on indirect measures of activity or on specific bacterial groups, yet the pervasiveness and rate of expression of the ADS operon in diverse mixed microbial communities in oral health and disease remain an open question.
View Article and Find Full Text PDFGlobally, caries is among the most frequent chronic childhood disease, and the fungal component of the microbial community responsible is poorly studied despite evidence that fungi contribute to increased acid production exacerbating enamel demineralization. HIV infection is another global health crisis. Perinatal HIV exposure with infection are caries risk factors; however, the caries experience in the context of perinatal HIV exposure without infection is less clear.
View Article and Find Full Text PDFChildren living with HIV have a higher prevalence of oral diseases, including caries, but the mechanisms underlying this higher prevalence are not well understood. Here, we test the hypothesis that HIV infection is associated with a more cariogenic oral microbiome, characterized by an increase in bacteria involved in the pathogenesis of caries. We present data generated from supragingival plaques collected from 484 children representing three exposure groups: (i) children living with HIV (HI), (ii) children who were perinatally exposed but uninfected (HEU), and (iii) unexposed and therefore uninfected children (HUU).
View Article and Find Full Text PDFDental caries is a multifactorial disease driven by interactions between the highly complex microbial biofilm community and host factors like diet, oral hygiene habits, and age. The oral streptococci are one of the most dominant members of the plaque biofilm and are implicated in disease but also in maintaining oral health. Current methods used for studying the supragingival plaque community commonly sequence portions of the16S rRNA gene, which often cannot taxonomically resolve members of the streptococcal community past the genus level due to their sequence similarity.
View Article and Find Full Text PDFBackground: This study seeks to understand better the mechanisms underlying the increased risk of caries in HIV-infected school-aged Nigerian children by examining the relationship between the plaque microbiome and perinatal HIV infection and exposure. We also seek to investigate how perinatal HIV infection and exposure impact tooth-specific microbiomes' role on caries disease progression.
Methods: The participants in this study were children aged 4 to 11 years recruited from the University of Benin Teaching Hospital (UBTH), Nigeria, between May to November 2019.
Dental caries is one of the most common diseases worldwide. Bacteria and fungi are both commensals in the oral cavity; however, most research regarding caries has focused on bacterial impacts. The oral fungal mycobiome associated with caries is not well characterized, and its role in disease is unclear.
View Article and Find Full Text PDF