This study develops a 73-year dataset of water balance components from 1950 to 2022 for the Laurentian Great Lakes Basins. This is carried out using the Large Lakes Statistical Water Balance Model (L2SWBM), which provides a Bayesian statistical framework that assimilates binational input datasets sourced from the United States and Canada. The L2SWBM infers feasible water balance component estimates through this Bayesian framework by constraining the output with a standard water balance equation.
View Article and Find Full Text PDFHydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside excessive nutrient loads that have contributed to lake eutrophication.
View Article and Find Full Text PDFWe develop new estimates of monthly water balance components from 1950 to 2019 for the Laurentian Great Lakes, the largest surface freshwater system on Earth. For each of the Great Lakes, lake storage changes and water balance components were estimated using the Large Lakes Statistical Water Balance Model (L2SWBM). Multiple independent data sources, contributed by a binational community of research scientists and practitioners, were assimilated into the L2SWBM to infer feasible values of water balance components through a Bayesian framework.
View Article and Find Full Text PDFThis study geospatially quantifies the mass of an essential fertilizer element, phosphorus, available from human urine and feces, globally, regionally, and by specific country. The analysis is performed over two population scenarios (2009 and 2050). This important material flow is related to the presence of improved sanitation facilities and also considers the global trend of urbanization.
View Article and Find Full Text PDFKnowledge of potential benefits resulting from technological interventions informs decision making and planning of water, sanitation, and hygiene programs. The public health field has built a body of literature showing health benefits from improvements in water quality. However, the connection between improvements in water quantity and health is not well documented.
View Article and Find Full Text PDFEnviron Sci Technol
June 2008
Improved sanitation is considered equally important for public health as is access to improved drinking water. However, the world has been slower to meet the challenge of sanitation provision for the world's poor. We analyze previously cited barriers to sanitation coverage including inadequate investment poor or nonexistent policies, governance, too few resources, gender disparities, and water availability.
View Article and Find Full Text PDF