The high potential of siRNAs to silence oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, divalent lipid-conjugated siRNAs are optimized for in situ binding to albumin to improve pharmacokinetics and tumor delivery. Systematic variation of the siRNA conjugate structure reveals that the location of the linker branching site dictates tendency toward albumin association versus self-assembly, while the lipid hydrophobicity and reversibility of albumin binding also contribute to siRNA intracellular delivery.
View Article and Find Full Text PDFThe high potential for therapeutic application of siRNAs to silence traditionally undruggable oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, siRNAs were optimized for binding to albumin through C lipid modifications to improve pharmacokinetics and tumor delivery. Systematic variation of siRNA conjugates revealed a lead structure with divalent C lipids each linked through three repeats of hexaethylene glycol connected by phosphorothioate bonds.
View Article and Find Full Text PDF