Publications by authors named "Lauren K Macreadie"

In this paper we demonstrate that Pt(ii) complexes can function as efficient transmembrane chloride transporters. A series of Pt(ii) metal complexes with urea-appended isoquinoline ligands were synthesised and operate classical hydrogen bonding interactions rather than ligand exchange. A number of the complexes exhibited potent transmembrane chloride activity in vesicle studies, while also showing strong antiproliferative activity in cisplatin-resistant cell lines induction of apoptosis and inhibition of intracellular ROS.

View Article and Find Full Text PDF

A heteroleptic [PdLL'] coordination cage containing a photoswitchable azobenzene-derived ligand catalyzes the Michael addition reaction between methyl vinyl ketone and benzoyl nitromethane within its cavity. The corresponding homoleptic cages are catalytically inactive. The heteroleptic cage can be reversibly disassembled and reassembled using 530 and 405 nm light, respectively, allowing catalysis within the cage to be switched and at will.

View Article and Find Full Text PDF

A porous three-component hydrogen bonded framework, 1⋅biphen⋅TP, was prepared from a tetra-amidinium component (1) and two different dianions, benzene-1,4-dicarboxylate (terephthalate, TP) and biphenyl-4,4'-dicarboxylate (biphen). Interestingly, when the framework was prepared in ethanol/water, 1⋅biphen⋅TP forms even when an excess of either dicarboxylate is present. However, when only water is used as solvent, only two-component frameworks are formed.

View Article and Find Full Text PDF

Zinc norcorrole was prepared as its pyridine complex (ZnNc·pyridine) by metalation of freebase norcorrole. The ZnNc·pyridine complex is distinctly bowl-shaped, as demonstrated by both X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy showed characteristic ring current deshielding effects, with different magnitudes on either face of the bowl-shaped complex.

View Article and Find Full Text PDF

Hydrogen-bonded frameworks were prepared from a tetra-amidinium component and three-dimensional cubane and bicyclopentane dicarboxylate linkers. Despite the incorporation of aliphatic components, the frameworks demonstrate strong and reversible uptake of water vapour, with one of the frameworks showing water uptake at very low relative humidity.

View Article and Find Full Text PDF
Article Synopsis
  • Hexane isomers are important in the petrochemical industry but their similar properties make them hard to separate, resulting in energy-intensive processes with high carbon footprints.
  • There’s a push for nonthermal separation methods, like adsorption with solid sorbents or membranes, which could be more efficient.
  • The study introduces two new metal-organic frameworks (MOFs), NU-2004 and NU-2005, that are structurally stable and significantly improve the separation of hexane isomers compared to existing MOFs.
View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a class of porous materials with high surface areas, which are acquiring rapid attention on an exponential basis. A significant characteristic of MOFs is their ability to act as adsorbents to selectively separate component mixtures of similar size, thereby addressing the technological need for an alternative approach to conventional distillation methods. Recently, MOFs comprising a 3-Dimensional (3D) linker have shown outstanding capabilities for difficult separations compared to the parent 2-Dimensional (2D) analogue.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are highly tunable materials with potential for use as porous media in non-thermal adsorption or membrane-based separations. However, many separations target molecules with sub-angstrom differences in size, requiring precise control over the pore size. Herein, we demonstrate that this precise control can be achieved by installing a three-dimensional linker in an MOF with one-dimensional channels.

View Article and Find Full Text PDF

Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.

View Article and Find Full Text PDF

Access to the potential applications of metal-organic frameworks (MOFs) depends on rapid fabrication. While there have been advances in the large-scale production of single-component MOFs, rapid synthesis of multicomponent MOFs presents greater challenges. Multicomponent systems subjected to rapid synthesis conditions have the opportunity to form separate kinetic phases that are each built up using just one linker.

View Article and Find Full Text PDF

The arrangement of hydrogen bond donors around a central lipophilic scaffold has proven to be a successful strategy in the development of potent chloride transporters. In this work, we revisit an acridinone 1,9-bis(thio)urea motif which had previously shown promise as an anion sensor and expand the series of compounds by appending a variety of electron-withdrawing groups to the peripheral phenyl moieties. High levels of activity were achieved by the most effective compounds in the series, which facilitated strictly electroneutral transport.

View Article and Find Full Text PDF
Article Synopsis
  • Effective solid-state adsorbents like metal organic frameworks (MOFs) are designed with specific void spaces to selectively separate components from mixtures, such as benzene and cyclohexane, which traditionally requires costly processes.
  • Using bulky 3D-linkers to create MOFs generates unique pore shapes that enhance control over which molecules are adsorbed, making it important to investigate these selectivity preferences for industrial applications.
  • The study focuses on the adsorption characteristics of three different MOFs, revealing that MOF-5 shows an unexpected preference for cyclohexane, while CUB-5 and another MOF lean towards benzene, supported by calculations and simulations predicting their effectiveness in future separations.
View Article and Find Full Text PDF

At its core, reticular chemistry has translated the precision and expertise of organic and inorganic synthesis to the solid state. While initial excitement over metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) was undoubtedly fueled by their unprecedented porosity and surface areas, the most profound scientific innovation of the field has been the elaboration of design strategies for the synthesis of extended crystalline solids through strong directional bonds. In this contribution we highlight the different classes of reticular materials that have been developed, how these frameworks can be functionalized, and how complexity can be introduced into their backbones.

View Article and Find Full Text PDF

Synthetic anion transporters that facilitate chloride transport are promising candidates for channelopathy treatments. However, most anion transporters exhibit an undesired side effect of facilitating proton transport via interacting with fatty acids present in the membrane. To address the limitation, we here report the use of a new tetrapodal scaffold to maximize the selective interaction with spherical chloride over binding the carboxylate headgroup of fatty acids.

View Article and Find Full Text PDF

Mixed donor phenanthroline-carboxylate linkers were combined with Mn or Zn to form photoactive MOFs with large pore apertures. The MOFs display high CO adsorption capacities, which consequently causes structural framework flexibility, and align with favorable metrics for selective CO capture. The photophysical properties of the MOFs were investigated, with the Mn MOF giving rise to short triplet LMCT lifetimes.

View Article and Find Full Text PDF

The resurgence of interest in the hydrogen economy could hinge on the distribution of hydrogen in a safe and efficient manner. Whilst great progress has been made with cryogenic hydrogen storage or liquefied ammonia, liquid organic hydrogen carriers (LOHCs) remain attractive due to their lack of need for cryogenic temperatures or high pressures, most commonly a cycle between methylcyclohexane and toluene. Oxidation of methylcyclohexane to release hydrogen will be more efficient if the equilibrium limitations can be removed by separating the mixture.

View Article and Find Full Text PDF

The high surface area and porosity, and limitless compound and network combinations between the metal ions and organic ligands making up metal-organic frameworks (MOFs) offer tremendous opportunities for their use in many applications. While numerous methods have been proposed for the synthesis of MOF powders, it is often difficult to obtain oriented crystals with these techniques. Further, the need for additional post-synthesis steps to activate the crystals and release them from the substrate presents a considerable production challenge.

View Article and Find Full Text PDF

A photoactive, hetero-metallic CoII/RuII-based metal-organic framework (MOF) with a large channel aperture, ca. 21 Å, is reported. The photophysical properties of the MOF are derived from the RuII nodes giving rise to emission centred at ca.

View Article and Find Full Text PDF

One prominent aspect of metal organic frameworks (MOFs) is the ability to tune the size, shape, and chemical characteristics of their pores. MOF-5, with its open cubic connectivity of ZnO clusters joined by two-dimensional, terephthalate linkers, is the archetypal example: both functionalized and elongated linkers produce isoreticular frameworks that define pores with new shapes and chemical environments. The recent scalable synthesis of cubane-1,4-dicarboxylic acid (1,4-Hcdc) allows the first opportunity to explore its application in leading reticular architectures.

View Article and Find Full Text PDF

Polyoxometalates (POMs) are commonly prepared using a "bottom-up" synthetic procedure. The alternative "top-down" approach of disassembling a pre-formed POM unit to generate new synthetic intermediates is promising, but relatively comparatively underused. In this paper, a rationale for the top-down method is provided, demonstrating that this approach can generate compounds that are fundamentally inaccessible from simple bottom-up assembly.

View Article and Find Full Text PDF

The first cadmium-based ionic liquids (ILs) have been developed, along with a family of cadmium dialkyldithiocarbamate salts, (cation)[Cd(R2dtc)3], in the pursuit of single source molecular precursors that thermolyse to form cadmium sulfide. Pyrrolidinium cadmium dialkyldithiocarbamate salts, (C4C1py)[Cd(R2dtc)3], salts were established to be ILs through thorough thermal and structural investigation.

View Article and Find Full Text PDF