We compared the capability of human umbilical vein endothelial cells (HUVECs), induced pluripotent stem cell (iPSC)-derived endothelial cells (iECs), and human dermal blood endothelial cells (HDBECs) to effectively vascularize engineered human skin constructs (HSCs) and on immunodeficient mice. We quantified the angiogenesis within HSCs both and through computational analyses of immunofluorescent (IF) staining. We assayed with real-time quantitative PCR (RT-qPCR) the expression of key endothelial, dermal, and epidermal genes in 2D culture and HSCs.
View Article and Find Full Text PDFDrug screening studies for inflammatory skin diseases are currently performed using model systems that only partially recapitulate human diseased skin. Here, we developed a new strategy to incorporate T cells into human 3D skin constructs (HSCs), which enabled us to closely monitor and quantitate T cell responses. We found that the epidermis promotes the activation and infiltration of T cells into the skin, and provides a directional cue for their selective migration towards the epidermis.
View Article and Find Full Text PDFVascular diversity among organs has recently become widely recognized. Several studies using mouse and human fetal tissues revealed distinct characteristics of organ-specific vasculature in molecular and functional levels. Thorough understanding of vascular heterogeneities in human adult tissues is significant for developing novel strategies for targeted drug delivery and tissue regeneration.
View Article and Find Full Text PDF