Glucocorticoid signaling regulates target genes by multiple mechanisms, including the repression of transcriptional activities of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) though direct protein-protein interactions and subsequent O-GlcNAcylation of RNA polymerase II (pol II). Recent studies have shown that overexpression of O-linked β-N-acetylglucosamine transferase (OGT), which adds an O-linked β-N-acetylglucosamine (O-GlcNAc) group to the C-terminal domain of RNA pol II, increases the transrepression effects of glucocorticoids (GC). As O-GlcNAcase (OGA) is an enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, we hypothesized that the potentiation of GC effects following OGT overexpression could be similarly observed via the direct inhibition of OGA, inhibiting O-GlcNAc removal from pol II.
View Article and Find Full Text PDFDinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib's antitumor effect and relevant to the clinical duration of exposure.
View Article and Find Full Text PDFBackground: Distinction between asymptomatic and potentially clinically significant forms of galactosemia due to UDP-galactose 4'-epimerase (GALE) deficiency requires enzyme measurement in erythrocytes and other cells. We sought to develop a GALE assay using a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method.
Methods: The reversible GALE assay was conducted with UDPGal as a substrate.
The diagnosis of transferase and galactokinase deficiency galactosemia usually involves the measurement of erythrocyte galactose-1-phosphate uridylyltransferase (GALT) and galactokinase (GALK) enzyme activity, respectively. The current gold standard assays for these enzymes are radioactive assays, which are laborious and/or incapable of measuring low enzyme activities. To further our knowledge of genotype-phenotype relationships, we had developed an assay for GALT activity alone using LC-MS/MS.
View Article and Find Full Text PDFBackground: The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay for GALT enzyme activity measurement.
View Article and Find Full Text PDF