Metal phosphide-containing materials have emerged as a potential candidate of nonprecious metal-based catalysts for alkaline oxygen evolution reaction (OER). While it is known that metal phosphide undergoes structural evolution, considerable debate persists regarding the effects of dynamics on the surface activation and morphological stability of the catalysts. In this study, we synthesize NiP -FeO core-shell nanocatalysts with an amorphous NiP core designed for enhanced OER activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH) electrolytes.
View Article and Find Full Text PDFMicroneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated.
View Article and Find Full Text PDFPolymeric membrane fouling is a long-standing challenge for water filtration. Metal/metal oxide nanoparticle functionalization of the membrane surface can impart anti-fouling properties through the reactivity of the metal species and the generation of radical species. Copper oxide nanoparticles (CuO NPs) are effective at reducing organic fouling when used in conjunction with hydrogen peroxide, but leaching of copper ions from the membrane has been observed, which can hinder the longevity of the CuO NP activity at the membrane surface.
View Article and Find Full Text PDFBiomass upgrading - the conversion of biomass waste into value-added products - provides a possible solution to reduce global dependency on nonrenewable resources. This study investigates the possibility of green biomass upgrading for lactic acid production by electrochemically-driven degradation of glucose. Herein we report an electrooxidized copper(ii) electrode which exhibits a turnover frequency of 5.
View Article and Find Full Text PDFIn this study, a suite of natural wastewater sources is tested to understand the effects of wastewater composition and source on electrochemically driven nitrogen and phosphorus nutrient removal. Kinetics, electrode behavior, and removal efficiency were evaluated during electrochemical precipitation, whereby a sacrificial magnesium (Mg) anode was used to drive precipitation of ammonium and phosphate. The electrochemical reactor demonstrated fast kinetics in the natural wastewater matrices, removing up to 54% of the phosphate present in natural wastewater within 1 min, with an energy input of only 0.
View Article and Find Full Text PDFThis field case study reports findings on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water carried out at an aquaculture farm and two irrigation locations in Hawaii. We used a flow cell incorporating PtRu/graphite anode and graphite cathode for the disinfection/ammonia removal from aquaculture wastewater, and a flow cell assembled with graphite plates as both anode and cathode for the disinfection of irrigation water. The removal of ammonia followed the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode.
View Article and Find Full Text PDFThe drive toward sustainable phosphorus (P) recovery from agricultural and municipal wastewater streams has intensified. However, combining P recovery with energy conservation is perhaps one of the greatest challenges of this century. In this study, we report for the first time the simultaneous electroless production of struvite and dihydrogen from aqueous ammonium dihydrogen phosphate (NHHPO) solutions in contact with either a pure magnesium (Mg) or a Mg alloy as the anode and 316 stainless steel (SS) as the cathode placed in a bench-scale electrochemical reactor.
View Article and Find Full Text PDFIn this work, we report experimental studies on the disinfection of irrigation water using a flow cell assembled with low-cost graphite plates as both anode and cathode. Natural irrigation waters collected from two irrigation locations (Reservoir 225 and Bott Well Pond) in Hawaii were used, and synthetic irrigation waters were prepared based on the chemical analysis of natural irrigation waters. The concentration of chloride was 10.
View Article and Find Full Text PDFBimetallic iron-nickel-based nanocatalysts are perhaps the most active for the oxygen evolution reaction (OER) in alkaline electrolytes. Recent developments in literature have suggested that the ratio of iron and nickel in Fe-Ni thin films plays an essential role in the performance and stability of the catalysts. In this work, the metallic ratio of iron to nickel was tested in alloy bimetallic nanoparticles.
View Article and Find Full Text PDFControlling the 3-D morphology of nanocatalysts is one of the underexplored but important approaches for improving the sluggish kinetics of the oxygen evolution reaction (OER) in water electrolysis. This work reports a scalable, oil-based method based on thermal decomposition of organometallic complexes to yield highly uniform Ni-Fe-based nanocatalysts with a well-defined morphology (i.e.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2017
Zero-valent iron (ZVI) nanoparticles are susceptible to oxidation and are therefore sensitive to postsynthesis processing, including both separation and storage techniques. Two separation methods, centrifugation and magnetic separation, were evaluated in this study. Nanoparticle stability during storage in ethanol-water solutions was also studied, and the influence of both water and aeration on nanoparticle oxidation was determined.
View Article and Find Full Text PDFChitosan (CS)-graphene oxide (GO) composite films were fabricated, characterized, and evaluated as pressure-driven water filtration membranes. GO particles were incorporated into a chitosan polymer solution to form a suspension that was cast as a membrane via evaporative phase inversion allowing for scale-up for cross-flow testing conditions. Morphology and composition results for nano and granular GO in the CS matrix indicate that the particle size of GO impacts the internal membrane morphology as well as the structural order and the chemical composition.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
March 2016
The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces.
View Article and Find Full Text PDFEnviron Sci Technol
December 2012
Zero valent iron (ZVI) nanoparticles are versatile in their ability to remove a wide variety of water contaminants, and ZVI-based bimetallic nanoparticles show increased reactivity above that of ZVI alone. ZVI nanoparticles degrade contaminants through the reactive species (e.g.
View Article and Find Full Text PDFThe primary limitations to inland brackish water reverse osmosis (RO) desalination are the cost and technical feasibility of concentrate disposal. To decrease concentrate volume, a side-stream process can be used to precipitate problematic scaling salts and remove the precipitate with a solid/liquid separation step. The treated concentrate can then be purified through a secondary reverse osmosis stage to increase overall recovery and decrease the volume of waste requiring disposal.
View Article and Find Full Text PDFInland brackish water reverse osmosis (RO) is economically and technically limited by the large volume of salty waste (concentrate) produced. The use of a controlled precipitation step, followed by solid/liquid separation (filtration), has emerged as a promising side-stream treatment process to treat reverse osmosis concentrate and increase overall system recovery. The addition of antiscalants to the RO feed prevents precipitation within the membrane system but might have a deleterious effect on a concentrate treatment process that uses precipitation to remove problematic precipitates.
View Article and Find Full Text PDFReverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design.
View Article and Find Full Text PDF