Publications by authors named "Lauren F Borkowski"

Intrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) selectively eliminates respiratory (e.g., phrenic) motor neurons, and mimics motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases.

View Article and Find Full Text PDF

Intrapleural injection of cholera toxin B conjugated to saporin (CTB-SAP) mimics respiratory motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. Seven-day CTB-SAP rats elicit enhanced phrenic long-term facilitation (pLTF) primarily through TrkB and PI3K/Akt-dependent mechanisms [i.e.

View Article and Find Full Text PDF

Selective elimination of respiratory motor neurons using intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) mimics motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. This CTB-SAP model allows us to study the impact of motor neuron death on the output of surviving phrenic motor neurons. After 7(d) days of CTB-SAP, phrenic long-term facilitation (pLTF, a form of respiratory plasticity) is enhanced, but returns towards control levels at 28d.

View Article and Find Full Text PDF

Despite respiratory motor neuron death, ventilation is preserved in SOD1 rats. Compensatory respiratory plasticity may counterbalance the loss of these neurons. Phrenic long-term facilitation (pLTF; a form of respiratory plasticity) in naïve rats is 5-HT2 and NADPH oxidase-dependent.

View Article and Find Full Text PDF

The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis.

View Article and Find Full Text PDF