Implantable glucose biosensors provide real-time information about blood glucose fluctuations, but their utility and accuracy are time-limited due to the foreign body response (FBR) following their insertion beneath the skin. The slow release of nitric oxide (NO), a gasotransmitter with inflammation regulatory properties, from a sensor surface has been shown to dramatically improve sensors' analytical biocompatibility by reducing the overall FBR response. Indeed, work in a porcine model suggests that as long as the implants (sensors) continue to release NO, even at low levels, the inflammatory cell infiltration and resulting collagen density are lessened.
View Article and Find Full Text PDFAnalytical performance and tissue interactions of nitric oxide (NO)-releasing continuous glucose sensors were evaluated over a 28 d study in a diabetic swine model. Interstitial glucose was detected using an implanted needle-type amperometric glucose sensor. Two NO-release durations from the sensor surface were achieved by doping the membranes with nonporous (14 d release) or porous (30 d release) -nitrosothiol-functionalized silica nanoparticles.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2019
The kidney is an anisotropic organ, with higher elasticity along versus across nephrons. The degree of mechanical anisotropy in the kidney may be diagnostically relevant if properly exploited; however, if improperly controlled, anisotropy may confound stiffness measurements. The purpose of this study is to demonstrate the clinical feasibility of acoustic radiation force (ARF)-induced peak displacement (PD) measures for both exploiting and obviating mechanical anisotropy in the cortex of human kidney allografts, in vivo.
View Article and Find Full Text PDF