Publications by authors named "Lauren E Sirois"

Palladium-catalyzed cross-couplings remain among the most robust methodologies to form carbon-carbon and carbon-heteroatom bonds. In particular, carbon-nitrogen (C-N) couplings (Buchwald-Hartwig aminations) find widespread use in fine chemicals industries. The use of base in these reactions is critical for catalyst activation and proton sequestration.

View Article and Find Full Text PDF

An efficient and scalable route to -butyl 3-oxo-3-spiro[benzofuran-2,4'-piperidine]-1'-carboxylate, a central prochiral intermediate in the synthesis of SHP2 inhibitor (), was achieved. Preparation of the title compound from readily available 2-fluorobenzaldehyde included formation of a modified Katritzky benzotriazole hemiaminal, which, upon deprotonation by -butyllithium, participated in umpolung reactivity via 1,2-addition to -butyl 4-oxopiperidine-1-carboxylate (-Boc-4-piperidone). Most notably, this reaction was developed as a robust plug-flow process that could be executed on multiple kilograms without the need for pilot-scale reaction vessels operating at low cryogenic temperatures.

View Article and Find Full Text PDF

A chromatography-free asymmetric synthesis of GDC-6036 () was achieved via a highly atroposelective Negishi coupling of aminopyridine and quinazoline catalyzed by 0.5 mol % [Pd(cin)Cl] and 1 mol % (,)-Chiraphite to afford the key intermediate ()-. An alkoxylation of ()- with ()--methylprolinol () and a global deprotection generates the penultimate heterobiaryl intermediate .

View Article and Find Full Text PDF

An efficient asymmetric synthesis of a potent KRAS G12C covalent inhibitor, GDC-6036 (), is reported. The synthesis features a highly atroposelective Negishi coupling to construct the key C-C bond between two highly functionalized pyridine and quinazoline moieties by employing a Pd/Walphos catalytic system. Statistical modeling by comparing computational descriptors of a range of Walphos chiral bisphosphine ligands to a training set of experimental results was used to inform the selection of the best ligand, , which afforded the desired Negishi coupling product in excellent selectivity.

View Article and Find Full Text PDF

A highly efficient asymmetric synthesis of the IDO inhibitor navoximod, featuring the stereoselective installation of two relative and two absolute stereocenters from an advanced racemic intermediate, is described. The stereocenters were set via a crystallization-induced dynamic resolution along with two selective ketone reductions: one via a biocatalytic ketoreductase transformation and one via substrate-controlled hydride delivery from LiAlH(OBu). Following this strategy, navoximod was synthesized in 10 steps from 2-fluorobenzaldehyde and isolated in 23% overall yield with 99.

View Article and Find Full Text PDF

We report the development of a method to diastereoselectively access tetrasubstituted alkenes via nickel-catalyzed Suzuki-Miyaura crosscouplings of enol tosylates and boronic acid esters. Either diastereomeric product was selectively accessed from a mixture of enol tosylate starting material diastereomers in a convergent reaction by judicious choice of the ligand and reaction conditions. A similar protocol also enabled a divergent synthesis of each product isomer from diastereomerically pure enol tosylates.

View Article and Find Full Text PDF

Automated high-throughput experimentation (HTE) is a powerful tool for scientists to explore and optimize chemical transformations by simultaneously screening yield, stereoselectivity, and impurity profiles. To analyze the HTE samples, high-throughput analysis (HTA) platforms must be fast, accurate, generic, and specific at the same time. A large amount of high-quality data is critical for the success of machine learning models in the era of big data.

View Article and Find Full Text PDF

We report that selective -phosphorylation of aminoimidazoles results in a key steering element that controls isomeric selectivity in the condensation of β-ethoxy acrylamides and aminoimidazoles to furnish imidazo[1,2-]pyrimidines. We identified conditions that provide highly selective (99:1) phosphorylation at the endo- or exocyclic nitrogen. Either the 2-amino or 4-amino isomer of the (benzo)imidazo[1,2-]pyrimidine products could be isolated in 64-95% yield.

View Article and Find Full Text PDF

Identification and localization of modifications in peptides containing multiple disulfide bonds is challenging due to inefficient fragmentation in mass spectrometry (MS) analysis. In cases where MS fragmentation techniques such as electron capture dissociation (ECD), electron transfer dissociation (ETD), and ultraviolet photodissociation (UVPD) fail to achieve efficient fragmentation, off-line disulfide bond reduction techniques are typically employed prior to MS analysis. Some commonly used reducing agents include dithiothreitol (DTT) and tris(2-carboxyethyl)phosphine (TCEP).

View Article and Find Full Text PDF

The human kinome comprises over 500 protein kinases. When mutated or over-expressed, many play critical roles in abnormal cellular functions associated with cancer, cardiovascular disease and neurological disorders. Here we report a step-economical approach to designed kinase inhibitors inspired by the potent, but non-selective, natural product staurosporine, and synthetically enabled by a novel, complexity-increasing, serialized [5 + 2]/[4 + 2] cycloaddition strategy.

View Article and Find Full Text PDF

The first theoretical study on the effects of ligands on the mechanism, reactivities, and regioselectivities of Rh(I)-catalyzed (5 + 2) cycloadditions of vinylcyclopropanes (VCPs) and alkynes has been performed using density functional theory (DFT) calculations. Highly efficient and selective intermolecular (5 + 2) cycloadditions of VCPs and alkynes have been achieved recently using two novel rhodium catalysts, [Rh(dnCOT)](+)SbF(6)(-) and [Rh(COD)](+)SbF(6)(-), which provide superior reactivities and regioselectivities relative to that of the previously reported [Rh(CO)(2)Cl](2) catalyst. Computationally, the high reactivities of the dnCOT and COD ligands are attributed to the steric repulsions that destabilize the Rh-product complex, the catalyst resting state in the catalytic cycle.

View Article and Find Full Text PDF

Rh COT in the act: a Ni(0)-catalyzed [2+2+2+2] cycloaddition provides a high-yielding, scalable synthesis of the ligand dinaphtho[a,e]cyclooctatetraene (dnCOT). dnCOT complexation with Rh(I) gives [Rh(dnCOT)(MeCN)(2)]SbF(6), an excellent catalyst for [5+2] cycloadditions of vinylcyclopropanes and π-systems with impressive functional group compatibility.

View Article and Find Full Text PDF

The first studies on the regioselectivity of Rh(I)-catalyzed (5 + 2) cycloadditions between vinylcyclopropanes (VCPs) and alkynes have been conducted experimentally and analyzed using density functional theory (DFT). The previously unexplored regiochemical consequences for this catalytic, intermolecular cycloaddition were determined by studying the reactions of several substituted VCPs with a range of unsymmetrical alkynes. Experimental trends were identified, and a predictive model was established.

View Article and Find Full Text PDF

A cationic rhodium(I) complex--[(C(10)H(8))Rh(cod)](+) SbF(6)(-)--catalyzes the remarkably efficient intermolecular [5 + 2] cycloaddition of vinylcyclopropanes (VCPs) and various alkynes, providing cycloheptene cycloadducts in excellent yields in minutes at room temperature. The efficacy and selectivity of this catalyst are also shown in a novel diversification strategy, affording a cycloadduct library in one step from nine commercially available components.

View Article and Find Full Text PDF

The bicyclo[5.3.0]decane skeleton is one of the most commonly encountered bicyclic subunits in nature and the core scaffold of a wide range of targets of structural, biological, and therapeutic importance.

View Article and Find Full Text PDF

A novel Pd/sulfoxide-catalyzed macrolactonization reaction of linear omega-alkenoic acids is reported that proceeds via serial ligand-catalyzed allylic C-H oxidation. The scope of this macrolactonization appears to be very broad. Aryl, alkyl, and (Z)-alpha,beta-unsaturated acids are all competent nucleophiles for this reaction, with the latter undergoing macrolactonization with no olefin isomerization.

View Article and Find Full Text PDF