Data suggest that device-guided paced respiration (<10 breaths/min) may reduce blood pressure in hypertensive patients. We hypothesized that daily device-guided slow breathing may lower blood pressure in patients with hypertension and obstructive sleep apnea (OSA). In this one-arm pilot study, we enrolled 25 subjects with hypertension and OSA.
View Article and Find Full Text PDFVariable ventilation (VV), characterized by breath-to-breath variation of tidal volume (Vt) and breathing rate (f), has been shown to improve lung mechanics and blood oxygenation during acute lung injury in many species compared with conventional ventilation (CV), characterized by constant Vt and f. During CV as well as VV, the lungs of mice tend to collapse over time; therefore, the goal of this study was to develop a new VV mode (VV(N)) with an optimized distribution of Vt to maximize recruitment. Groups of normal and HCl-injured mice were subjected to 1 h of CV, original VV (VV(O)), CV with periodic large breaths (CV(LB)), and VV(N), and the effects of ventilation modes on respiratory mechanics, airway pressure, blood oxygenation, and IL-1beta were assessed.
View Article and Find Full Text PDF