Publications by authors named "Lauren E Hood"

Drugs of abuse activate neuroimmune signaling in addiction-related regions of the brain, including the prefrontal cortex (PFC) which mediates executive control, attention, and behavioral inhibition. Traditional psychostimulants including methamphetamine and cocaine are known to induce PFC inflammation, yet the effects of synthetic cathinone derivatives are largely unexplored. In this study, we examined the ability of repeated binge-like intake of the pyrovalerone cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV) to alter cytokine profiles in the PFC.

View Article and Find Full Text PDF

Branched-chain amino acids (BCAAs) are known to be neurorestorative after traumatic brain injury (TBI). Despite clinically significant improvements in severe TBI patients given BCAAs after TBI, the approach is largely an unrecognized option. Further, TBI continues to be the most common cause of morbidity and mortality in adolescents and adults.

View Article and Find Full Text PDF

The endogenous opioid system has been implicated in the rewarding and reinforcing effects of alcohol. Pro-opiomelanocortin (POMC) neurons located within the arcuate nucleus of the hypothalamus (ArcN) secrete multiple peptides associated with alcohol consumption, including β-endorphin (β-END), α-melanocyte stimulating hormone (α-MSH), and adrenocorticotropic hormone (ACTH). In this study, we utilized chemogenetics to bidirectionally modulate ArcN POMC neurons to determine their role in alcohol and saccharin consumption and regional levels of POMC-derived peptides.

View Article and Find Full Text PDF

Ethanol activates various opioid peptide-containing circuits within the brain that may underlie its motivational and rewarding effects. One component of this circuitry consists of neurons located in the arcuate nucleus (ArcN) of the hypothalamus which express pro-opiomelanocortin (POMC), an opioid precursor peptide that is cleaved to form bioactive fragments including β-endorphin and α-melanocyte stimulating hormone. In this study, we sought to determine if ethanol intake activates ArcN POMC neurons as measured by expression of the immediate early gene c-fos.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) plays an important role in regulating executive functions including reward seeking, task flexibility, and compulsivity. Studies in humans have demonstrated that drugs of abuse, including heroin, cocaine, methamphetamine, and alcohol, alter prefrontal function resulting in the consequential loss of inhibitory control and increased compulsive behaviors, including drug seeking. Within the mPFC, layer V pyramidal cells, which are delineated into two major subtypes (type I and type II, which project to subcortical or commissurally to other cortical regions, respectively), serve as the major output cells which integrate information from other cortical and subcortical regions and mediate executive control.

View Article and Find Full Text PDF

Background: Alcohol abuse is a worldwide public health concern and leads to an estimated 90,000 alcohol-related deaths in the United States annually. Alcohol may promote its euphoric and motivational effects, in part, by activating the endogenous opioid system. Pro-opiomelanocortin (POMC) producing neurons located within the arcuate nucleus (ArcN) of the hypothalamus make up one circuit of the endogenous opioid system, and heavily projects to reward-related brain areas such as the amygdala, nucleus accumbens (NAc) and ventral tegmental area (VTA).

View Article and Find Full Text PDF

Alcohol abuse is a worldwide public health concern, yet the precise molecular targets of alcohol in the brain are still not fully understood. Alcohol may promote its euphoric and motivational effects, in part, by activating the endogenous opioid system. One particular component of this system consists of pro-opiomelanocortin (POMC) -producing neurons in the arcuate nucleus (ArcN) of the hypothalamus, which project to reward-related brain areas.

View Article and Find Full Text PDF

Opioid use disorder (OUD) and alcohol use disorder (AUD) are two highly prevalent substance-related disorders worldwide. Co-use of the substances is also quite prevalent, yet there are no pharmacological treatment approaches specifically designed to treat co-morbid OUD and AUD. Here, the authors critically summarize OUD, AUD and opioid/alcohol co-use and their current pharmacotherapies for treatment.

View Article and Find Full Text PDF

Smoking initiation predominantly occurs during adolescence, often in the presence of peers. Therefore, understanding the neural mechanisms underlying the rewarding effects of nicotine and social stimuli is vital. Using the conditioned place preference (CPP) procedure, we measured immediate early gene (IEG) expression in animals following exposure either to a reward-conditioned environment or to the unconditioned stimuli (US).

View Article and Find Full Text PDF

Recent studies have implicated glutamate neurotransmission as an important substrate for the extinction of conditioned behaviors, including responding for drug reinforcement. Positive allosteric modulation of the type-5 metabotropic glutamate receptor (mGluR5) in particular has emerged as a treatment strategy for the enhancement of extinction of drug-motivated behaviors. Here, we investigated the effects of the mGluR5 positive allosteric modulator CDPPB, a compound known for its cognitive enhancing effects in rodents, on extinction learning in rats with different histories of methamphetamine (METH) training.

View Article and Find Full Text PDF

Rationale: Methamphetamine (METH) is a highly potent and addictive psychostimulant with severe detrimental effects to the health of users. Currently, METH addiction is treated with a combination of cognitive and behavioral therapies, but these traditional approaches suffer from high relapse rates. Furthermore, there are currently no pharmacological treatment interventions approved by the FDA specifically for the treatment of METH addiction.

View Article and Find Full Text PDF

Recent findings implicate group II metabotropic glutamate receptors (mGluR(2/3)) in the reinforcing effects of psychostimulants and have identified these receptors as potential treatment targets for drug addiction. Here, we investigated the effects of mGluR(2/3) stimulation on cue- and drug-primed reinstatement in rats with different histories of methamphetamine (METH) self-administration training, under two conditions: 16 daily sessions of short access (90 min/day, ShA), or 8 daily sessions of short access followed by 8 sessions of long access (6 h/day, LgA). Following self-administration and subsequent extinction training, rats were pretreated with the selective mGluR(2/3) agonist LY379268 (variable dose, 0-3 mg/kg), exposed to METH-paired cues or a priming injection of METH (1 mg/kg), and tested for reinstatement of METH-seeking behavior.

View Article and Find Full Text PDF

Pharmacological blockade of the type 5 metabotropic glutamate receptor (mGluR5) attenuates cue-induced reinstatement of ethanol-seeking behavior, yet the brain regions involved in these effects are not yet known. The purpose of the present study was to determine if local blockade of mGluR5 receptors in the basolateral amygdala (BLA) and/or the nucleus accumbens (NAc), two brain regions known to be involved in stimulus-reward associations, attenuate the reinstatement of ethanol-seeking behavior induced by ethanol-paired cues. As a control for possible non-specific effects, the effects of mGluR5 blockade in these regions on cue-induced reinstatement of sucrose-seeking were also assessed.

View Article and Find Full Text PDF

Adolescence is a period of enhanced sensitivity to social influences and vulnerability to drug abuse. Social reward in adolescent rats has been demonstrated with the conditioned place preference (CPP) model, but it is not clear whether limited contact with another rat without play is sufficient to produce reward. We investigated this issue using an apparatus containing two main compartment, each with a wire mesh barrier that allowed rats placed on either side of the barrier to have limited physical contact.

View Article and Find Full Text PDF

Cues associated with cocaine can elicit craving and relapse. Attempts have been made to employ extinction therapy, which is aimed at attenuating the incentive motivational effects of cocaine cues, as a treatment for cocaine addiction; however, this approach has been largely unsuccessful perhaps due to the inability to extinguish all cues associated with cocaine use while in a clinic. Recently, environmental enrichment (EE) during abstinence has been proposed as a strategy to attenuate cue-elicited cocaine craving.

View Article and Find Full Text PDF