Publications by authors named "Lauren E Henderson"

Recently, based on functional differences, we subdivided neurons juxtaposed to the facial nucleus into two distinct populations, the parafacial ventral and lateral regions, i.e., pFV and pFL.

View Article and Find Full Text PDF

Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.

View Article and Find Full Text PDF

Contiguous brain regions associated with a given behavior are increasingly being divided into subregions associated with distinct aspects of that behavior. Using recently developed neuronal hyperpolarizing technologies, we functionally dissect the parafacial region in the medulla, which contains key elements of the central pattern generator for breathing that are important in central CO2-chemoreception and for gating active expiration. By transfecting different populations of neighboring neurons with allatostatin or HM4D Gi/o-coupled receptors, we analyzed the effect of their hyperpolarization on respiration in spontaneously breathing vagotomized urethane-anesthetized rats.

View Article and Find Full Text PDF

Increased nitroxidative stress causes mitochondrial dysfunctions through oxidative modifications of mitochondrial DNA, lipids, and proteins. Persistent mitochondrial dysfunction sensitizes the target cells/organs to other pathological risk factors and thus ultimately contributes to the development of more severe disease states in alcoholic and nonalcoholic fatty liver disease. The incidences of nonalcoholic fatty liver disease continuously increase due to high prevalence of metabolic syndrome including hyperlipidemia, hypercholesterolemia, obesity, insulin resistance, and diabetes.

View Article and Find Full Text PDF

Emerging evidence suggests that the lack of PPARα enhances hepatic steatosis and inflammation in Ppara-null mice when fed a high-fat diet (HFD). Thus, the aim of this study was to determine whether Ppara-null mice are more susceptible to nonalcoholic steatohepatitis (NASH) than their wild-type (WT) counterparts following short-term feeding with a HFD. Age-matched male WT and Ppara-null mice were randomly assigned to consume ad libitum a standard Lieber-DeCarli liquid diet (STD) (35% energy from fat) or a HFD (71% energy from fat) for 3 wk.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-α (PPARα) has been implicated in a potent anti-inflammatory activity. However, no information is available on whether PPARα can affect signal transducers and activator of transcription proteins (STATs) in acute liver damage. Thus, this study was aimed to investigate the in vivo role of PPARα in elevating STATs as well as oxidative/nitrosative stress in a model of lipopolysaccharide (LPS)-induced acute hepatic inflammatory injury.

View Article and Find Full Text PDF