Background: Inherited kidney diseases are a common cause of chronic kidney disease (CKD) in children. Identification of a monogenic cause of CKD is more common in children than in adults. This study evaluated the diagnostic yield and phenotypic spectrum of children who received genetic testing through the KIDNEYCODE sponsored genetic testing program.
View Article and Find Full Text PDFInter-individual variation in gene expression has been shown to be heritable and is often associated with differences in disease susceptibility between individuals. Many studies focused on mapping associations between genetic and gene regulatory variation, yet much less attention has been paid to the evolutionary processes that shape the observed differences in gene regulation between individuals in humans or any other primate. To begin addressing this gap, we performed a comparative analysis of gene expression variability and expression quantitative trait loci (eQTLs) in humans and chimpanzees, using gene expression data from primary heart samples.
View Article and Find Full Text PDFPreviously published comparative functional genomic data sets from primates using frozen tissue samples, including many data sets from our own group, were often collected and analyzed using nonoptimal study designs and analysis approaches. In addition, when samples from multiple tissues were studied in a comparative framework, individuals and tissues were confounded. We designed a multitissue comparative study of gene expression and DNA methylation in primates that minimizes confounding effects by using a balanced design with respect to species, tissues, and individuals.
View Article and Find Full Text PDFA growing body of evidence supports the notion that variation in gene regulation plays a crucial role in both speciation and adaptation. However, a comprehensive functional understanding of the mechanisms underlying regulatory evolution remains elusive. In primates, one of the crucial missing pieces of information towards a better understanding of regulatory evolution is a comparative annotation of interactions between distal regulatory elements and promoters.
View Article and Find Full Text PDFComparative genomic studies in primates have the potential to reveal the genetic and mechanistic basis for human specific traits. These studies may also help us better understand inter-species phenotypic differences that are clinically relevant. Unfortunately, the obvious limitation on sample collection and experimentation in humans and non-human apes severely restrict our ability to perform dynamic comparative studies in primates.
View Article and Find Full Text PDFBackground: There is substantial interest in the evolutionary forces that shaped the regulatory framework in early human development. Progress in this area has been slow because it is difficult to obtain relevant biological samples. Induced pluripotent stem cells (iPSCs) may provide the ability to establish in vitro models of early human and non-human primate developmental stages.
View Article and Find Full Text PDFUnlabelled: We calculated the incidence, mortality, and case fatality rates for Caucasians and non-Caucasians during 19th century yellow fever (YF) epidemics in the United States and determined statistical significance for differences in the rates in different populations. We evaluated nongenetic host factors, including socioeconomic, environmental, cultural, demographic, and acquired immunity status that could have influenced these differences. While differences in incidence rates were not significant between Caucasians and non-Caucasians, differences in mortality and case fatality rates were statistically significant for all epidemics tested (P < 0.
View Article and Find Full Text PDF