Publications by authors named "Lauren Courter"

Nontarget impacts of routine aerial silvicultural practices on surface water quality are not well documented. Thus, uncertainty remains regarding herbicide treatment effects on ecological and human health. To investigate factors that influence silvicultural herbicide concentrations in surface water and identify any potential risks, we conducted a 2-year study that monitored multiple streams for herbicide residues following aerial application of glyphosate, clopyralid, sulfometuron methyl (SMM), and metsulfuron methyl (MSM).

View Article and Find Full Text PDF

Limited evidence exists on the latent effects of toxicant exposure on the seawater adaptability of anadromous salmon and steelhead. It is unclear whether such an effect exists for the widely used and relatively non-toxic herbicide endothall. Coho salmon, Oncorhynchus kisutch (coho), Chinook salmon, O.

View Article and Find Full Text PDF

Dendritic morphology is a critical determinant of neuronal connectivity, and in postganglionic sympathetic neurons, tonic activity correlates directly with the size of the dendritic arbor. Thus, identifying signaling mechanisms that regulate dendritic arborization of sympathetic neurons is important to understanding how functional neural circuitry is established and maintained in the sympathetic nervous system. Bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, downstream signaling events that link BMP receptor activation to dendritic growth are poorly characterized.

View Article and Find Full Text PDF

Notch signaling is firmly established as a form of cell-to-cell communication that is critical throughout development. Dysregulation of Notch has been linked to cancer and developmental disorders, making it an important target for therapeutic intervention. One aspect of this pathway that sets it apart from others is its apparent reliance on endocytosis by signal-sending and signal-receiving cells.

View Article and Find Full Text PDF

The carcinogenic effects of individual polycyclic aromatic hydrocarbons (PAH) are well established. However, their potency within an environmental complex mixture is uncertain. We evaluated the influence of diesel exhaust particulate matter on PAH-induced cytochrome P450 (CYP) activity, PAH-DNA adduct formation, expression of certain candidate genes and the frequency of tumor initiation in the two-stage Sencar mouse model.

View Article and Find Full Text PDF

The carcinogenic polycyclic aromatic hydrocarbon (PAHs) benzo[a]pyrene (B[a]P) and dibenzo[a,l]pyrene (DB[a,l]P) are widespread environmental pollutants, however their toxicological effects within a mixture is not established. We investigated the influence of diesel exhaust (DE) on B[a]P and DB[a,l]P-induced PAH-DNA adduct formation, metabolic activation, gene expression and 8-oxo-dG adduct levels in human breast epithelial cells (MCF-10A) in culture. Following 24 and 48h, cells co-exposed to DE plus B[a]P exhibited a significant decrease in PAH-DNA adduct levels, compared with B[a]P alone, as determined by (33)P-postlabeling combined with reversed-phase high performance liquid chromatography (HPLC).

View Article and Find Full Text PDF
Article Synopsis
  • * Results show that while UDPM has weak tumor-initiating activity, it significantly delays the start of tumors caused by B[a]P and does not affect the tumor initiation from DB[a,l]P.
  • * The findings indicate that other components in mixtures, like UDPM, can change how effectively PAHs cause cancer by inhibiting certain enzymes involved in PAH activation and increasing DNA damage.
View Article and Find Full Text PDF