The identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions.
View Article and Find Full Text PDFStructure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of () phosphatidylinositol-4-kinase β (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of .
View Article and Find Full Text PDFThe original map of mammalian cytochrome P450 (CYP450) residues involved in substrate recognition was prepared for the CYP2 family by Gotoh in 1992 by manual alignment of mammalian CYP450 residues with substrate recognition site (SRS) residues manually delimited from a bacterial cytochrome P450-substrate complex. Using modern structural bioinformatics tools, we have identified CYP450-ligand interactions in mammalian complexes to create a "X-ray structures" SRS map. In a parallel approach, we have built a "docking" SRS map by successful docking of 868 known substrates of 10 mammalian CYP450 isoforms and analysis of contacts made in docking solutions.
View Article and Find Full Text PDFDifferential tunnel-opening patterns were established in static structures of mammalian CYP450 isoforms and subsequently applied to identify tunnel-intersecting residues. The identified tunnel-intersecting residues permitted the subsequent construction of gating models via the identification of intra-protein interactions. We define 28 two-state gating models and 37 singlet gating-residue models.
View Article and Find Full Text PDFIn this work, a model for the interaction between CYP2B4 and the FMN domain of rat P450-oxidoreductase is built using as template the structure of a bacterial redox complex. Amino acid residues identified in the literature as cytochrome P450 (CYP)-redox partner interfacial residues map to the interface in our model. Our model supports the view that the bacterial template represents a specific electron transfer complex and moreover provides a structural framework for explaining previous experimental data.
View Article and Find Full Text PDF