Publications by authors named "Lauren Azevedo-Schmidt"

AbstractThe influence of climate on deep-time plant-insect interactions is becoming increasingly well known, with temperature, CO increases (and associated stoichiometric changes in plants), and aridity likely playing a critical role. In our modern climate, all three factors are shifting at an unprecedented rate, with uncertain consequences for biodiversity. To investigate effects of temperature, stoichiometry (specifically that of nitrogen), and aridity on insect herbivory, we explored insect herbivory in three modern floral assemblages and in 39 fossil floras, especially focusing on eight floras around a past hyperthermal event (the Paleocene-Eocene Thermal Maximum) from Bighorn Basin (BB).

View Article and Find Full Text PDF

Much of what we know about terrestrial life during the Carboniferous Period comes from Middle Pennsylvanian (~315-307 Mya) Coal Measures deposited in low-lying wetland environments. We know relatively little about terrestrial ecosystems from the Early Pennsylvanian, which was a critical interval for the diversification of insects, arachnids, tetrapods, and seed plants. Here we report a diverse Early Pennsylvanian trace and body fossil Lagerstätte (~320-318 Mya) from the Wamsutta Formation of eastern North America, distinct from coal-bearing deposits, preserved in clastic substrates within basin margin conglomerates.

View Article and Find Full Text PDF

Premise: Plant traits and insect herbivory have been highly studied within the modern record but only to a limited extent within the paleontological. Preservation influences what can be measured within the fossil record, but modern methods are also not compatible with paleobotanical methods. To remedy this knowledge gap, a comparable framework was created here using modern and paleobotanical methods, allowing for future comparisons within the fossil record.

View Article and Find Full Text PDF

Temporal patterns of plant-insect interactions are readily observed within fossil datasets but spatial variability is harder to disentangle without comparable modern methods due to limitations in preservation. This is problematic as spatial variability influences community structure and interactions. To address this we replicated paleobotanical methods within three modern forests, creating an analogous dataset that rigorously tested inter- and intra-forest plant-insect variability.

View Article and Find Full Text PDF

Plants and their insect herbivores have been a dominant component of the terrestrial ecological landscape for the past 410 million years and feature intricate evolutionary patterns and co-dependencies. A complex systems perspective allows for both detailed resolution of these evolutionary relationships as well as comparison and synthesis across systems. Using proxy data of insect herbivore damage (denoted by the damage type or DT) preserved on fossil leaves, functional bipartite network representations provide insights into how plant-insect associations depend on geological time, paleogeographical space, and environmental variables such as temperature and precipitation.

View Article and Find Full Text PDF

Fossilized leaves provide the longest running record of hyperdiverse plant-insect herbivore associations. Reconstructions of these relationships over deep time indicate strong links between environmental conditions, herbivore diversity, and feeding damage on leaves. However, herbivory has not been compared between the past and the modern era, which is characterized by intense anthropogenic environmental change.

View Article and Find Full Text PDF

Ecosystem function and stability are highly affected by internal and external stressors. Utilizing paleobotanical data gives insight into the evolutionary processes an ecosystem undergoes across long periods of time, allowing for a more complete understanding of how plant and insect herbivore communities are affected by ecosystem imbalance. To study how plant and insect herbivore communities change during times of disturbance, we quantified community turnover across the Paleocene--Eocene boundary in the Hanna Basin, southeastern Wyoming.

View Article and Find Full Text PDF