During the last years, there has been a growing interest in the research focused on the pharmaceutical residues in the environment. Those compounds have been recognized as a possible threat to aquatic ecosystems, due to their inherent biological activity and their "pseudo-persistence". Their presence has been relatively few investigated in the marine environment, though it is the last receiver of the continental contamination.
View Article and Find Full Text PDFHuman pharmaceuticals, such as nonsteroidal anti-inflammatory drugs (NSAIDs), are an emerging threat to marine organisms. NSAIDs act through inhibition of cyclooxygenase (COX) conversion of arachidonic acid into prostaglandins. One experiment was carried out whereby marine mussels were exposed for 72 h to 1 and 100 μg/L diclofenac (DCF).
View Article and Find Full Text PDFDespite the growing concern on the presence of pharmaceutically active compounds in the environment, few studies have been conducted on their metabolism in marine organisms. In this study, a non-targeted strategy based on the generation of chemical profiles generated by liquid chromatography combined with high resolution mass spectrometry was used to highlight metabolite production by the Mediterranean mussel (Mytilus galloprovincialis) after diclofenac exposure. This method allowed revealing the production of 13 metabolites in mussel tissues.
View Article and Find Full Text PDFLittle research has been conducted on the occurrence of pharmaceuticals and personal care products (PPCPs) in the marine environment despite being increasingly impacted by these contaminants. This article reviews data on the occurrence of PPCPs in seawater, sediment, and organisms in the marine environment. Data pertaining to 196 pharmaceuticals and 37 personal care products reported from more than 50 marine sites are analyzed while taking sampling strategies and analytical methods into account.
View Article and Find Full Text PDFConcentrations of the antiepileptic drugs carbamazepine (Cbz), oxcarbazepine (OxCz) and their main metabolites were predicted in a wastewater treatment plant (WTP) and in the vicinity of its submarine outfall located in a Mediterranean coastal zone. Refined predicted environmental concentrations (PECs) were calculated in effluents based on consumption data and human excretion rates. PECs were estimated in the sea using the hydrodynamic MARS 3D model integrating meteorological data, oceanic conditions (wind, tide, atmospheric pressure), freshwater and sewage inputs.
View Article and Find Full Text PDF