Publications by authors named "Lauren A O'Donnell"

Article Synopsis
  • Microbiology educators are focusing on helping students grasp essential concepts in virology due to rising vaccine hesitancy and misinformation surrounding COVID-19.
  • There is a shortage of virologists teaching undergraduates, often leading to limited coverage in microbiology courses, which can hinder meaningful discussions about viral issues.
  • A team of educators, supported by the American Society for Virology, developed curriculum guidelines for teaching virology in undergraduate settings, including measurable learning objectives to aid educators in implementing these guidelines.
View Article and Find Full Text PDF

Viral infections of the central nervous system (CNS) often cause worse neurological outcomes in younger hosts. Throughout childhood, the brain undergoes extensive development and refinement to produce functional neural networks. Network function is maintained partly with the help of neural stem cells (NSCs) that replace neuronal and glia subtypes in the two neurogenic niches of the brain (the hippocampus and subventricular zone).

View Article and Find Full Text PDF

Viruses induce a wide range of neurological sequelae through the dysfunction and death of infected cells and persistent inflammation in the brain. Neural stem cells (NSCs) are often disturbed during viral infections. Although some viruses directly infect and kill NSCs, the antiviral immune response may also indirectly affect NSCs.

View Article and Find Full Text PDF

Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies.

View Article and Find Full Text PDF

Curriculum guidelines for virology are needed to best guide student learning due to the continuous and ever-increasing volume of virology information, the need to ensure that undergraduate and graduate students have a foundational understanding of key virology concepts, and the importance in being able to communicate that understanding to both other virologists and nonvirologists. Such guidelines, developed by virology educators and the American Society for Virology Education and Career Development Committee, are described herein.

View Article and Find Full Text PDF

Lipidoid nanoparticles (LNPs) are the delivery platform in Onpattro, the first FDA-approved siRNA drug. LNPs are also the carriers in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While these applications have demonstrated that LNPs effectively deliver nucleic acids to hepatic and muscle cells, it is unclear if LNPs could be used for delivery of siRNA to neural cells, which are notoriously challenging delivery targets.

View Article and Find Full Text PDF

Viruses that infect the central nervous system (CNS) are associated with developmental abnormalities as well as neuropsychiatric and degenerative conditions. Many of these viruses such as Zika virus (ZIKV), cytomegalovirus (CMV), and herpes simplex virus (HSV) demonstrate tropism for neural stem cells (NSCs). NSCs are the multipotent progenitor cells of the brain that have the ability to form neurons, astrocytes, and oligodendrocytes.

View Article and Find Full Text PDF

Ribavirin is a water-soluble antiviral compound which, owing to its inability to cross the blood-brain barrier, has limited effectiveness in treating viruses affecting the central nervous system. Direct nose-to-brain delivery was investigated for ribavirin in combination with poloxamer 188, an excipient known to enhance the absorption of drug compounds administered intranasally. Composite solid microparticles suitable for intranasal insufflation were prepared by suspending fine crystals of ribavirin in a matrix of poloxamer 188, which were cryogenically milled and characterized to ensure that ribavirin remained stable throughout preparation.

View Article and Find Full Text PDF

Viral infections of the central nervous system (CNS) often cause disease in an age-dependent manner, with greater neuropathology during the fetal and neonatal periods. Transgenic CD46+ mice model these age-dependent outcomes through a measles virus infection of CNS neurons. Adult CD46+ mice control viral spread and survive the infection in an interferon gamma (IFNγ)-dependent manner, whereas neonatal CD46+ mice succumb despite similar IFNγ expression in the brain.

View Article and Find Full Text PDF

Most pharmacy faculty members are more confident in their foundation as research scientists or clinical pharmacists than with the scholarship of teaching and learning (SoTL). However, many wish to enter this rewarding field of scholarship in order to test pedagogical innovations, measure teaching effectiveness, and share success with the Academy. This commentary provides general advice for those who wish to explore SoTL but lack formal education and training in this area.

View Article and Find Full Text PDF

Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling.

View Article and Find Full Text PDF

Neonates are highly susceptible to viral infections in the periphery, potentially due to deviant cytokine responses. Here, we investigated the role of interferon-gamma (IFNγ), a key anti-viral in the neonatal brain. We found that (i) IFNγ, which is critical for viral control and survival in adults, delays mortality in neonates, (ii) IFNγ limits infiltration of macrophages, neutrophils, and T cells in the neonatal brain, (iii) neonates and adults differentially express pathogen recognition receptors and Type I interferons in response to the infection, (iv) both neonates and adults express IFNγ and other Th1-related factors, but expression of many cytokines/chemokines and IFNγ-responsive genes is age-dependent, and (v) administration of IFNγ extends survival and reduces CD4 T cell infiltration in the neonatal brain.

View Article and Find Full Text PDF

Interest in global health education within the pharmacy curriculum has increased significantly in recent years. However, discussion of different models and methods to evaluate course structures are limited. The overall objective was to (1) describe the structure of our global health elective for pharmacy students, and (2) assess educational outcomes related to perceived/formal knowledge and attitudes associated with global health.

View Article and Find Full Text PDF

To design and implement a bioinformatics exercise that applies immunological principles to predicting rejection of protein drugs based upon patient genotype. Doctor of pharmacy (PharmD) students used the Immune Epitope Database, a freely available bioinformatics tool. Over a 2-week laboratory, students interrogated whether a protein drug would be predicted to induce an immune response based upon patient genotype.

View Article and Find Full Text PDF

With the alarming rise of antibiotic resistance, clinical professionals are called upon to manage antibiotic therapies using the most relevant and recent clinical and laboratory data. To this end, antimicrobial stewardship (AMS) programs aim to reduce unnecessary or suboptimal use of antibiotics while maximizing outcomes for the patient. For AMS programs to succeed, the active participation of clinical professionals at all levels of patient care is required.

View Article and Find Full Text PDF

Neural stem/progenitor cells (NPSCs) express receptors for many inflammatory cytokines, with varying effects on differentiation and proliferation depending on the stage of development and the milieu of inflammatory mediators. In primary neurons and astrocytes, we recently showed that interferon gamma (IFNγ), a potent antiviral cytokine that is required for the control and clearance of many central nervous system (CNS) infections, could differentially affect cell survival and cell cycle progression depending upon the cell type and the profile of activated intracellular signaling molecules. Here, we show that IFNγ inhibits proliferation of primary NSPCs through dephosphorylation of the tumor suppressor Retinoblastoma protein (pRb), which is dependent on activation of signal transducers and activators of transcription-1 (STAT1) signaling pathways.

View Article and Find Full Text PDF

Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases.

View Article and Find Full Text PDF

Background: In the developing brain, self-renewing neural stem/progenitor cells (NSPC) give rise to neuronal and glial lineages. NSPC survival and differentiation can be altered by neurotropic viruses and by the anti-viral immune response. Several neurotropic viruses specifically target and infect NSPCs, in addition to inducing neuronal loss, which makes it difficult to distinguish between effects on NSPCs that are due to direct viral infection or due to the anti-viral immune response.

View Article and Find Full Text PDF

For many students in the health sciences, including doctor of pharmacy (PharmD) students, basic and clinical sciences often appear detached from each other. In the infectious disease field, PharmD students additionally struggle with mastering the diversity of microorganisms and the corresponding therapies. The objective of this study was to design an interdisciplinary project that integrates fundamental microbiology with clinical research and decision-making skills.

View Article and Find Full Text PDF

To fill the gap in grant writing training in pharmacology graduate education using an active-learning strategy. Graduate students wrote subsections of a grant according to NIH guidelines. Students revised their applications based on multiple rounds of critiques from professors and peers throughout a semester-long scientific writing course.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the extent of overlapping immunogenic peptides between three pharmaceutical biologics and influenza viruses. Clinical studies have shown that subsets of patients with rheumatoid arthritis (RA) develop anti-drug antibodies towards anti-TNFα biologics. We postulate that common infectious pathogens, including influenza viruses, may sensitize RA patients toward recombinant proteins.

View Article and Find Full Text PDF

The signal transduction molecule, Stat1, is critical for the expression of type I and II interferon (IFN)-responsive genes in most cells; however, we previously showed that primary hippocampal mouse neurons express low basal Stat1, with delayed and attenuated expression of IFN-responsive genes. Moreover, IFNγ-dependent resolution of a neurotropic viral challenge in permissive mice is Stat1-independent. Here, we show that exogenous IFNγ has no deleterious impact on neuronal viability, and staurosporine-induced apoptosis in neurons is significantly blunted by the addition of IFNγ, suggesting that IFNγ confers a pro-survival signal in neurons.

View Article and Find Full Text PDF

Ebola virus disease (EVD) poses significant clinical care implications for pharmacists. Emergency preparedness efforts should be undertaken to ensure vital response to EVD. Pharmacists should consider factors such as enhanced use of resources for front-line EVD patient care along with procurement of investigational medications.

View Article and Find Full Text PDF

Neurons are chiefly nonrenewable; thus, cytolytic immune strategies to clear or control neurotropic viral infections could have lasting neurologic consequences. IFN-γ is a potent antiviral cytokine that is critical for noncytolytic clearance of multiple neurotropic viral infections, including measles virus (MV); however, the downstream pathways through which IFN-γ functions in neurons have not been defined. Unlike most cell types studied to date in which IFN-γ affects gene expression via rapid and robust activation of STAT1, basal STAT1 levels in primary hippocampal neurons are constitutively low, resulting in attenuated STAT1 activation and consequently slower kinetics of IFN-γ-driven STAT1-dependent gene expression.

View Article and Find Full Text PDF

While measles virus (MV) continues to have a significant impact on human health, causing 150,000-200,000 deaths worldwide each year, the number of fatalities that can be attributed to MV-triggered central nervous system (CNS) diseases are on the order of a few hundred individuals annually (World Health Organization 2009). Despite this modest impact, substantial effort has been expended to understand the basis of measles-triggered neuropathogenesis. What can be gained by studying such a rare condition? Simply stated, the wealth of studies in this field have revealed core principles that are relevant to multiple neurotropic pathogens, and that inform the broader field of viral pathogenesis.

View Article and Find Full Text PDF