Publications by authors named "Lauren A Castro"

Article Synopsis
  • The study explores how within-host HIV evolution is influenced by features like the reactivation of latent proviruses and recombination, which complicate traditional phylogenetic analysis by disrupting expected patterns in evolutionary trees.
  • A coalescent-based simulator was developed to incorporate these complexities, helping to compare true genealogies represented as ancestral recombination graphs (ARGs) with standard bifurcating trees.
  • Surprisingly, while latency and recombination disrupt evolutionary signals, recombination helps recover temporal signals by incorporating fragments from older genomes, suggesting that traditional phylogenetic trees can still reflect some underlying dynamics of HIV evolution despite not accurately depicting its history.
View Article and Find Full Text PDF

Background: Throughout the COVID-19 pandemic, the SARS-CoV-2 virus has continued to evolve, with new variants outcompeting existing variants and often leading to different dynamics of disease spread.

Methods: In this paper, we performed a retrospective analysis using longitudinal sequencing data to characterize differences in the speed, calendar timing, and magnitude of 16 SARS-CoV-2 variant waves/transitions for 230 countries and sub-country regions, between October 2020 and January 2023. We then clustered geographic locations in terms of their variant behavior across several Omicron variants, allowing us to identify groups of locations exhibiting similar variant transitions.

View Article and Find Full Text PDF

The COVID-19 pandemic has caused severe health, economic, and societal impacts across the globe. Although highly efficacious vaccines were developed at an unprecedented rate, the heterogeneity in vaccinated populations has reduced the ability to achieve herd immunity. Specifically, as of Spring 2022, the 0-4 year-old population is still unable to be vaccinated and vaccination rates across 5-11 year olds are low.

View Article and Find Full Text PDF

Dengue virus remains a significant public health challenge in Brazil, and seasonal preparation efforts are hindered by variable intra- and interseasonal dynamics. Here, we present a framework for characterizing weekly dengue activity at the Brazilian mesoregion level from 2010-2016 as time series properties that are relevant to forecasting efforts, focusing on outbreak shape, seasonal timing, and pairwise correlations in magnitude and onset. In addition, we use a combination of 18 satellite remote sensing imagery, weather, clinical, mobility, and census data streams and regression methods to identify a parsimonious set of covariates that explain each time series property.

View Article and Find Full Text PDF

Background: Prior to the COVID-19 pandemic, US hospitals relied on static projections of future trends for long-term planning and were only beginning to consider forecasting methods for short-term planning of staffing and other resources. With the overwhelming burden imposed by COVID-19 on the health care system, an emergent need exists to accurately forecast hospitalization needs within an actionable timeframe.

Objective: Our goal was to leverage an existing COVID-19 case and death forecasting tool to generate the expected number of concurrent hospitalizations, occupied intensive care unit (ICU) beds, and in-use ventilators 1 day to 4 weeks in the future for New Mexico and each of its five health regions.

View Article and Find Full Text PDF

Background: As conscientious vaccination exemption (CVE) percentages rise across the United States, so does the risk and occurrence of outbreaks of vaccine-preventable diseases such as measles. In the state of Texas, the median CVE percentage across school systems more than doubled between 2012 and 2018. During this period, the proportion of schools surpassing a CVE percentage of 3% rose from 2% to 6% for public schools, 20% to 26% for private schools, and 17% to 22% for charter schools.

View Article and Find Full Text PDF

Influenza A/H3N2 is a rapidly evolving virus which experiences major antigenic transitions every two to eight years. Anticipating the timing and outcome of transitions is critical to developing effective seasonal influenza vaccines. Using a published phylodynamic model of influenza transmission, we identified indicators of future evolutionary success for an emerging antigenic cluster and quantified fundamental trade-offs in our ability to make such predictions.

View Article and Find Full Text PDF

Background: Information from historical infectious disease outbreaks provides real-world data about outbreaks and their impacts on affected populations. These data can be used to develop a picture of an unfolding outbreak in its early stages, when incoming information is sparse and isolated, to identify effective control measures and guide their implementation.

Objective: This study aimed to develop a publicly accessible Web-based visual analytic called Analytics for the Investigation of Disease Outbreaks (AIDO) that uses historical disease outbreak information for decision support and situational awareness of an unfolding outbreak.

View Article and Find Full Text PDF

Background: Confirmed local transmission of Zika Virus (ZIKV) in Texas and Florida have heightened the need for early and accurate indicators of self-sustaining transmission in high risk areas across the southern United States. Given ZIKV's low reporting rates and the geographic variability in suitable conditions, a cluster of reported cases may reflect diverse scenarios, ranging from independent introductions to a self-sustaining local epidemic.

Methods: We present a quantitative framework for real-time ZIKV risk assessment that captures uncertainty in case reporting, importations, and vector-human transmission dynamics.

View Article and Find Full Text PDF

ABSTRACT Flight dispersal of the triatomine bug species Rhodnius pallescens Barber, the principal vector of Chagas disease in Panama, is an important mechanism for spreading Trypanosoma cruzi, causative agent of Chagas disease. This study measures R. pallescens flight performance using a tethered flight mill both when uninfected, and when infected with T.

View Article and Find Full Text PDF