Publications by authors named "Laurel M Hagge"

The skin, our largest organ, protects against environmental dangers but is vulnerable to various conditions like infections, eczema, dermatitis, psoriasis, skin cancer, and age-related collagen and elastin degradation. Its outer layer, the water-impermeable epidermis, presents challenges for passive drug delivery to the lower living layers of the skin. An ideal dermal delivery system should penetrate the epidermis and release treatments over time.

View Article and Find Full Text PDF

Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation.

View Article and Find Full Text PDF

Vaccines have saved countless lives by preventing and even irradicating infectious diseases. Commonly used subunit vaccines comprising one or multiple recombinant proteins isolated from a pathogen demonstrate a better safety profile than live or attenuated vaccines. However, the immunogenicity of these vaccines is weak, and therefore, subunit vaccines require a series of doses to achieve sufficient immunity against the pathogen.

View Article and Find Full Text PDF

S-adenosyl-L-methionine (SAM) is an abundant biomolecule used by methyltransferases to regulate a wide range of essential cellular processes such as gene expression, cell signaling, protein functions, and metabolism. Despite considerable effort, there remain many specificity challenges associated with designing small molecule inhibitors for methyltransferases, most of which exhibit off-target effects. Interestingly, NMR evidence suggests that SAM undergoes conformeric exchange between several states when free in solution.

View Article and Find Full Text PDF

Intracellular targeting is essential for the efficient delivery of drugs and nanotherapeutics. Transporting nanomaterials into cells' cytoplasm for therapeutic purposes can be challenging due to the endosomal trap and lysosomal degradation of cargo. To overcome this issue, we utilized chemical synthesis to design a functional carrier that can escape the endosome and deliver biological materials into the cytoplasm.

View Article and Find Full Text PDF

Virus-like particles are an emerging class of nano-biotechnology with the Tobacco Mosaic Virus (TMV) having found a wide range of applications in imaging, drug delivery, and vaccine development. TMV is typically produced in planta, and, as an RNA virus, is highly susceptible to natural mutation that may impact its properties. Over the course of 2 years, from 2018 until 2020, our laboratory followed a spontaneous point mutation in the TMV coat protein-first observed as a 30 Da difference in electrospray ionization mass spectrometry (ESI-MS).

View Article and Find Full Text PDF

Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical .

View Article and Find Full Text PDF